VectorScript Language Guide

This Language Guide is intended to explain the intricacies of the VectorScript
Language. It provides basic concepts needed to understand the language as well as
explanations of the individual language components. VectorScript is based on the
Pascal programming languagein that it has similar constructs; however it should not
be confused with Pascal which isafull featured high-level programming language.
VectorScript is a scripting language which requires no compiling.

The process of creating and editing scripts using the VectorScript Editor is contained
in your User's Manual, Chapter 19. Ready-to-use Functions and Procedures are
accessed from the VectorScript Editor. These functions and procedures are defined
in your on-line help for easy reference while creating scripts. The information
contained within this manual can be used when creating your own scripts which
entail a detailed understanding of VectorScript’s language constructs.

VectorScript provides a comprehensive set of predefined functions which provide
access to the objects in a VectorWorks document. These can be supplemented with

In this Guide

Basic Concepts
Constants
Reserved Words
Special Symbols
Delimeters
Comments
Labels
Statements

Expressions

any user defined functions contained in a script. The VectorScript language contains © Yalues
identifiers, statements, expressions and operators.
The most basic script of most programming languages is the script that producesthe
Hello World string of text. The following example presents the HelloWorld script in
the VectorScript language.

PROCEDURE Hel | oWor | d;

BEG N

Message(’' Hel l o, World!’);

END;

Run(Hel | oWor 1 d);
Vector Script Language Guide OL-VS1

Basic Concepts

VectorScript Language Guide

Notice that in this example there is a user-defined procedure (HelloWorld), a pre-defined procedure
call (Message). This script shows a similarity between VectorScript and the Pascal language. One
difference between VectorScript and Pascal is the need for the Run() call at the end of the script to
indicate where execution should begin.

The following sections describe the basic concepts behind the VectorScript |anguage and the handling
of data types, numbers, and strings.

Identifiers

An ldentifier:

variable, constant, function, and procedure names are identifiers

stored to 20 characters

case insensitive

cannot be a reserved word

can't redefine a predefined or standard identifier (VectorScript differs from Pascal here)

You can use standard identifiers which make up the standard pascal library calls and are part of the
VectroScript language. These include; write, writeln, sin, cos, chr, and ord among others. Predefined
identifiers include the 650 plus VectorScript functions and procedures which manipul ate VectorWorks
and its objects. Standard and predefined identifier types behave the same. User defined identifiers
include any function, procedure and variable created by a user. The names must follow identifier
naming conventions and can not conflict with existing identifiers.

Spaces

spaces can not be inserted into the middle of identifier names, reserved words or multi
character operators (>=)

spaces must be inserted to clarify adjacent identifiers and reserved words
for index := first to last do

Inside single quotes, a space character is literal

Otherwise, spaces are ignored

Spaces can and should be used to make the script more readable such as indenting
compound statements.

Statements

Statements are the individual elements of a script which perform an action. These consist of:

OL-VS2 Vector Script Language Guide

Basic Concepts

VectorScript Language Guide

uses of built-in VectorScript statements such as IF, CASE, WHILE, FOR, REPEAT, and GOTO.
calls to predefined or user defined procedures
assignments (using := operator)

Simple statements can be combined into a compound statement by including them within a
Begin...End block. Compound statements can be used anywhere a statement can be used.

Expressions

An expression describes an algebraic or logical computation which results in avalue. Expressions
combine constants literals, variables, function results, and the temporary results of sub-expressions
according to the rules of algebra and logic. Expressions can be used anywhere avaue is accepted.

Operators

Operators provide the built-in algebraic and logic capabilities used in VectorScript in evaluating
expressions. Expressions are evaluated observing the precedence of the operators.

Data Types

In VectorScript, as with other programming languages, the information which you use and process,
aso known as the data, can be categorized according to types. These types are important for a number
of reasons. Different types of data require different amounts of storage space in memory; VectorScript
uses these types to make sure there is enough memory reserved for your script to run properly. Data
types are also used to check for logic errorsin your scripts; for instance, multiplying aword by a
number would result in asyntax error.

In VectorScript the following types of data are allowed:

Data Type Explanation

BOOLEAN Boolean data values may have one of two values: TRUE or FAL SE. Boolean data values are
used to make decisions within VectorScript scripts

CHAR A char data value holds a single character, such as aletter, punctuation mark, etc.

HANDLE A handle data value is a specialized object identifier within VectorScript, sort of a“serial

number” for the object. Each object within a VectorWorks document can be accessed and its
object data (attributes, measurements) can then be retrieved or modified.

Handles to objects may change as the drawing is manipulated. They cannot be saved
between separate executions of a script.

Vector Script Language Guide OL-VS3

Basic Concepts

VectorScript Language Guide

Data Type Explanation

STRING String data val ues are sequences of characters, such aswords or sentences. String data
values may take from 0 to 255 characters per STRING value.

Structure Types

ARRAY An array data value stores a group of other values of the same type, which can then be
accessed through the name of the array and alocation within the array.

VECTOR Vector data values store x, y, and z data for performing mathematical vector operations
within VectorScript.

Primitive Types

INTEGER Integer data values are the positive and negative counting numbers(ex., -3,0,4,23). Integer
values may range from -32,768 to 32,767 (-2E15 to 2E15-1). No fractions or decimals are
allowed in integer data.

LONGINT Long integer data values are for storing larger whole numbers whose range will exceed that

of integer values. LONGINT values may range from -2,147,483,648 to 2,147,483,647 (-
2E31to 2E31-1). No fractions or decimals are allowed in LONGINT data.

REAL The REAL typeisa64 bit (IEEE double precision floating point number capable of
representing approximately 1.79E 308 with about 15 digits of precision.

Numbers and Strings

The two types of datayou will be most commonly handling in VectorScript will be numeric data (or
numbers), and character data (strings). Whether they are handled literally (using the actual value) or
through variables, knowing the format of this datais essential to programming in VectorScript.

Numeric datain VectorScript may be formatted using either decimal or fractional conventions.
Exponential notation is also supported, using the ‘E’ method of specifying the exponent value.

Example - Supported numeric formatting
0. 256724 1/ 165E7 52. 74E- 3- 256
Entering Coordinate data

VectorScript supports several methods for entering 2D coordinate data. These methods allow the user
to choose the method of inputting data that best fits their needs.

Absolute/Rel ative point methods:

OL-V&4 Vector Script Language Guide

Basic Concepts

VectorScript Language Guide

The default mode of VectorScript is absolute mode. In this mode, values entered as parameters for
procedures are assumed to be actual coordinate values relating to VectorWorks' coordinate system. For
example, if the user specifies:

Example - Absolute Method
Absol ut e;
Rect (0,1/2,1/2,1);
Rect(1/2,1/2,1,0);

the values are assumed to be absolute X-Y coordinate pairs.

In relative point mode, values are treated as X and Y offsets from the current position of the graphics
pen. When any object is drawn in VectorWorks, avirtual “pen” is used to draw from point to point.
When the operation compl etes, the pen will remain at that position until another draw routine is called.

The relative method can be used effectively to draw objects whose |ocation would make entry of
coordinate data cumbersome, or if the user knows the dimensions of an object and wishes to be able to
easily draw it a any location.

Example - Relative Method
MoveTo(1/ 16, 5/32);
Rel ati ve;
{ NOTE: when in relative node,}
{ the poly's first point is inplicit}
Poly(1,0, 1,1, -2,0, 0,-1);

Vector Script Language Guide OL-VS5

Basic Concepts

VectorScript Language Guide

The example above shows how the relative method can be used to draw an object. By using the relative
method, the object was drawn by specifying the offset locations of all the vertex points, essentially
telling the graphics pen the path to follow to draw the polygon. It would have been cumbersome to
specify all of the coordinates in Absolute mode.

At the beginning of execution, ascript isaways in absolute coordinate mode. Procedures Absolute and
Relative are used to switch VectorScript between these modes. Users should be careful to set the mode
appropriately to ensure proper execution.

Distance-Angle Method:

VectorScript supports one additional coordinate entry format, the distance-angle format. Distance
angle format specifies coordinate locations in terms of adistance and direction angle, similar to polar
coordinates found in mathematics. When specifying distance and angle, the general format isto
specify the distance in place of the X coordinate, and the anglein place of the Y coordinate. The pound
symbols are used to denote that an angle value follows, not a coordinate value. When using Distance-
angle coordinates, the point is always specified as ard ative offset from the current pen location.

Example - Distance-Angle Method

MoveTo(-1, 0);
Pol y(0. 25, #0, 0.5, #80,
1, #-80, 1,#80, 1,#-80, 1,#80, 1,#-80, 1,#80, 1,#-80,
0.5, #80, 0.25,#0);

OL-VS6 Vector Script Language Guide

Basic Concepts

VectorScript Language Guide

VectorScript also supports various methods for entering angular information, described in the
following table.

Example
Integer degrees RECT(2,#90,2,#0)
Decimal degrees RECT (2,#89.5,2,#359.5)
Degree symbol RECT (2,#90°,2,#0°)
Degrees, Minutes, Seconds RECT(2,#90d30'0",2,#0d30' 0")
Grads RECT (2,#100g, 2,#0g)
Radians RECT (2,#1.57r,2,#0r)
RECT (2,#1/2 _,2#0)
Surveyor’s units RECT (2,#N 45d30' 0" E,4,#545d30'0" E)

When using surveyor’s units, users should consult the section on Procedures AngleVar and
NoAngleVar in order to ensure that input datais interpreted correctly.

String Data

String datais usually found, when not in a variable, as a quoted string constant. This term describes a
character string enclosed in single quotes that is between 0 to 255 charactersin length, and is
constructed from the ASCII character set. The following example shows a quoted string constant.
Example - Quoted string constant

"I ama quoted string constant'

Vector Script Language Guide OL-VS7

Variables

VectorScript Language Guide

When specifying string constants in VectorScript, you should remember three important points:

Each string must be enclosed in single quotes
Spaces count as characters.
The maximum number of characters in one string is 255 characters.

Another example of astring constant in use is the value 'Hello, World' in the HellowWorld script.

Whileit isimportant to know how to handle numeric and character data directly in VectorScript, most
of thetime you will be handling your data through the use of variables. Variables provide the flexibility
that alows your scripts to adapt to your needs. To use them effectively, you will need to learn more
about how variables are used and specified.

In VectorScript, as with most programming languages, the primary means of storing and transferring
dataisthrough variables. Variables are identifiers associated with a reusabl e storage location for a data
value. This value can then be retrieved from the location for output or use in other ways.

VectorScript attempts to ensure that scripts assign appropriate data to variables. All VectorScript
variables must be declared with atype before they are used.

If necessary, VectorScript will convert (coerce) data from one type to another when it can do it
accurately and unambiguously. Otherwise, an attempt to store an incompatible type in a VectorScript
variable will result in an error.

Thevariable's datatype is defined at the beginning of the procedures, in the special areas known asthe
variable declaration (VAR) section. All data typesin VectorScript are supported as variables.

In VectorScript, variables for al supported data types are defined in the variable declaration section of
the VectorScript script. This section begins the use of the VAR reserved word, after which variables are
declared. It is terminated by the BEGIN reserved word, which defines the executable section of the
script.

Syntax

VAR
<variabl e ident 1> <variable ident 2> .., <variable ident n > :<data type>;
<variabl e ident 1> <variable ident 2> .., <variable ident n > :<data type>;

OL-VS8 Vector Script Language Guide

Variables

VectorScript Language Guide

Declaration of variablesis formatted as follows:

<t he variabl e nane> : <data type> ;

For example, to declare the variable myMessage, of type STRING, the following declaration statement
would be used:

myMessage : STRI NG

Multiple variables of a specific type can be declared in acomma delimited list, as shown:

i, j, k, I, m: |INTECER,

In addition, multiple declarations of the same data type may be included. Thisis often useful in large
scripts for logically grouping related variables, as shown:

hei ght , wi dt h, | engt h: REAL;
obj Name: STRI NG,
price,unitprice : REAL;

Declaration of variables reserves sufficient memory for storage of all variable data during script
execution. Variables declared at the beginning of the main script routine (or program block) will persist
throughout execution of the script. In addition, variables can be declared local to script subroutines;
these variables will only persist as long as the subroutine is within scope, and will be destroyed when
the subroutine is exited.

Variables may be named according to the preferences of the programmer, though they are subject to the
following rules:

Variable names may be of any length, but it is the first 20 characters that are used by
VectorScript to identify the variable.

Variable names are not case sensitive; upper and lowercase letters are equivalent.

Variable names must be comprised of letters, digits, and underscores; in particular, spaces are
not allowed.

Variable names must begin with a letter.

The following are examples of valid variable names:

fubarl [ine_wt TheBest Layer Ever A _Bi gNunber

Vector Script Language Guide OL-VS9

Constants

VectorScript Language Guide

The following examples are NOT valid:
2546a 32array - ABC- BEG N

BEGIN isareserved word, which cannot be used as a variable, since it would create a conflict, and an
error would be generated.

Variable values are aways undefined at the start of the program block in which they are declared. It is
up to you to properly initialize variables prior to use.

Constants are values in a VectorScript script routine which can not change throughout the entire
duration of execution. These values differ from variablesin that they cannot be modified by the script.
Constants are defined in a specia section of the script (known as the constant definition section),
preceded by the reserved word constant declaration format CONST. Each constant isrepresented by an
identifier, and each constant definition is separated by a semicolon.

Syntax

CONST
<constant identifier 1>=<val ue>;
<constant identifier 2>=<val ue>;

<constant identifier n>=<val ue>;

The general format is as follows :

Procedure Foo;

CONST
constant identifier constant val ue;
constant identifier = constant val ue;

OL-VS10 Vector Script Language Guide

Reserved Words and Special

VectorScript Language Guide

Constants can be used whenever avalue is needed throughout a script (they follow variable scope
rules). For example, if you are performing cal culations which require a value to be used throughout
your code as amultiplier (the value PI, for example), this multiplier could be defined as a constant.

Thereis also a predefined constant for usein VectorScript: NIL. This valueis returned when a
VectorScript procedure is unable to return a value, such as a handle to an object. NIL can also be used
toinitialize variables prior to use.

This constant can be used as a comparison value when evaluating the result of arelational expression.
For example, when processing through objects by handle, if no objects areleft in the traversal list, NIL
will be returned.

Aswith any language, programming or otherwise, there is a basic vocabulary from which you can
construct something meaningful. In VectorScript, reserved words and special symbols make up this
vocabulary, allowing the programmer to construct a script which is meaningful to the VectorScript
interpreter.

Reserved words constitute important markers to VectorScript. Without them, there would be no way
for VectorScript to derive ameaningful set of instructions from your code. These words provide a
framework which allows the VectorScript interpreter to read and understand your code.

The meanings of reserved words and special symbols cannot be changed.

Thefollowing isalist of reserved words in VectorScript:

AND FOR REPEAT
ARRAY FUNCTION THEN
BEGIN GOTO TO
CASE IF UNTIL
CONST LABEL VAR
DIV MOD WHILE
DO NOT

DOWNTO OF

ELSE OTHERWISE

END PROCEDURE

Vector Script Language Guide OL-VS11

Delimiters

VectorScript Language Guide

Special symbols provide asimilar function, telling the VectorScript interpreter how to act on numeric
data and variables found in your code. The following isalist of special symbolsin VectorScript.

+ - * / = < >
()

{ } | & # n $

. @ []

Thefollowing pairs of characters are also considered special symboals.

<> <= >= = . *x

The uses of specific reserved words and special symbolswill be explained in greater depth later in this
manual .

Delimiters act as separators between the discrete objects (variables, statements, operators) in your
source code so that the VectorScript interpreter can distinguish them as individual items. Spaces, tabs,
and carriage returns are the principal delimiters found in VectorScript.

In addition, special symbols act as delimiters along with their other functions. Thus, the VectorScript
interpreter can understand the expression

nunber of pl anets: =7+t wo;

because the := and + act as delimiters between the other components of the expression.

Comments are essentialy informational remarks which can be included in the VectorScript source
code to describe and clarify the way the VectorScript script works. They are important as a way of
providing a quick means of reorienting yourself with the code should you need to work with it in the
future, and are of great importance in alowing others to understand your code. It is highly
recommended that you always place comments in your code.

OL-VS§12 Vector Script Language Guide

Labels

VectorScript Language Guide

Comments are placed in the VectorScript code between opening and closing braces, as shown in the
example.

Example - Comment
{I have no idea what this code does- | didn’'t coment it}

Comments are ignored by the interpreter when executing a VectorScript script.

Labels are a specialized identifier that is used with GOTO statements. GOTOs allow the programmer
to jump to any point in the program, and the label is used to mark the target point of the GOTO
statement. Labels are defined in their own specia section in the code, in a manner similar to that of
constants.

Syntax

LABEL
<l abel identifier 1>,
<l abel identifier 2>,

<l abel identifer n>;

The label declaration section is formatted as follows;

Procedure Foo;
LABEL

| abel identifier 1,1 abel identifier 2,...,1abel identifier n;
VAR

etc.

where the |abel identifier is anumber between 1 and 9999.

When using labelsin VectorScript scripts, the label is always located preceding a VectorScript
statement, with the label identifier being followed by acolon. The label isthen referenced by the
GOTO statement, and during execution, the program flow of the script will jump to the label location
when the GOTO is encountered. For more information on GOTO statements, see “ Control Statements”
on page 1-39.

Vector Script Language Guide OL-VS13

Assignment Statements

VectorScript Language Guide

Example - Label
Procedure JnpTol abel ;
LABEL
1, 2;
VAR
I ntegerVal : | NTEGER
BEG N
I nt eger Val : =5;
| F IntegerVal = 5 THEN

GOor10 1;
Message(' I nteger was not equal to 5');
GOr0 2;
1. Message('lnteger equals 5');
2: END;

Run(JnpTol abel) ;

Assignment statements perform a basic operation of VectorScript; they assign avalueto avariable. In
the examples earlier in the manual, you have already seen numerous instances of the assignment
statement being used. Assignment statements are the primary method of assigning and moving values
in VectorScript.

Syntax

<variable identifier> =<the value to be assigned>;

The value being assigned can be represented by an explicit value (52, ‘ VectorWorks', TRUE), another
variable, the result or return value of afunction or an arithmetic expression, or the returned value from
aprocedure statement. The special symbol “:=", also known as the assignment operator, is used to
indicate to the interpreter that the value to be assigned is to be stored in the specified variable.

Assignment statements follow a set of rules governing which data types can be assigned to which type
of variable.

Coercion between numeric types is automatic REAL, INTEGER, and LONGINT can be
assigned to each other without restriction. Overflows produce undefined results.

OL-VS14 Vector Script Language Guide

Assignment Statements

VectorScript Language Guide

Coercion between string types is automatic. CHAR and STRING variables can be assigned to
each other.

The next examples show how assignment statements can be used in a VectorScript script.

Example - The assignment statement
Procedure AssignVals;
VAR
Real Val uel, Real Val ue2, Resul t : REAL,;
BEG N
Real Val uel: =6;
Real Val ue2: =2;
Resul t : =0;
Resul t : =Real Val uel* Real Val ue2;
Message(Resul t);
END,;
Run(Assi gnVal s) ;

This example shows how values can be assigned explicitly and by other means. In the example,
Real Valuel and RealValue2 are assigned explicit number values. Result is also assigned a value,
illustrating a bit of good programming practice, initializing your variables. Also shownisan
assignment statement where avalue is assigned that is the result of an arithmetic expression. The
various methods of assignment allow you awide range of ways to move and manipulate your data.

STRING and BOOLEAN values can also be used with assignment statements. The next example
shows how a STRING value is manipul ated with the assignment statement.

Example - The assignment statement
Procedure AssignVal s2;
VAR
StringVal uel, StringVal ue2: STRI NG
Char Val 1: CHAR;

BEGA N
StringValuel:="This is ';
CharVval : =" a’;

StringVal ue2: nice string’;
StringVal uel: =Concat (Stri ngVal uel, Char Val , Stri ngVal ue2);
Message(Stri ngVal uel) ;

END;

Vector Script Language Guide OL-VS15

Compound Statements

VectorScript Language Guide

Run(Assi gnVal s2);

Using assignment statements with STRING values, is very similar to using them with numeric values.
In the first three lines of the actual procedure, each variable is being assigned an explicit value, in this
case two literal strings and a character value. The next line in the procedure illustrates how the
assignment statement can be used to assign a value, returned from a VectorScript standard function, to
avariable. In this case, the result from Concat, which takes different strings and combines them into
one, isassigned to SringValuel.

You might have also noticed that SringValuel is used by Concat as a parameter. This shows not only
how variables can be reused, but also akey concept in how VectorScript executes. In VectorScript, the
assignment of the value to the variable will always occur AFTER any calculations, comparisons, or
calls to standard procedures. This method of working with variables can be used to your advantagein
your VectorScript scripts.

In VectorScript, you will often need to treat severa other statements as a group (for instance, when
executing severa statements as part of aloop). To do this, you will need to use a compound statement.

The general format of a compound statement is:

BEG N
<st at enent >;
<st at enent >;

<st at ement >;
END;

If you noticed that the main part of a VectorScript script isacompound statement, you are correct. The
body of every VectorScript script and subroutine consists of a single compound statement.

Compound statements can be nested as many times as you like; however, every BEGIN must have a
matching END keyword. A mismatch of the BEGIN-END pair will cause the VectorScript interpreter
to generate an error, and your script will not run.

OL-VS&16 Vector Script Language Guide

Predefined Procedure State-

VectorScript Language Guide

Procedure statements are probably the most common statement type used in VectorScript. Procedure
statements call a predefined VectorScript routine to perform an action in the document. You have
already seen several instances of procedure statements in previous examples. Provided procedure and
functions are described in the on-line HTML reference available through the help system.

An expression describes an algebraic or logical computation which resultsin avalue. Expressions
combine constants, literals, variables, function results, and the temporary results of sub-expressions
according to the rules of the algebra and logic.

Operators and Operands
All expressions consist of two parts: operators and operands.

Operators are special symbols or reserved words which tell the interpreter what actions to perform.
They are usually categorized as either arithmetic operators (which indicate amathematical operation to
be performed), relational operators (which compare 2 operands), or logical operators (which evaluate
the “state” existing between two operands).

Operands are the data values which are used asinput for the expression. This data can bein the form of
aliteral value (as shown above), but it can also be avariable, a constant, a function which returnsa
value, or another expression.

Vector Script Language Guide OL-VS17

Expressions

VectorScript Language Guide

Example - Operators and Operands

Operators

TheResul t : =(3*AVal ue) +Si n(Anot her Val ue*Pl) ;

Operands

The example shows all four described ways of providing operand data. The VectorScript interpreter
processes this expression by first performing the operation within the first parentheses, which isitself
an arithmetic expression. Next, the sine operation is performed by calling the Sin procedure statement,
using the product of a constant Pl and the value contained within the variable as the operand. The
results of these operations are then used as the operands for the addition operation. The result of the
expression is then assigned to the variable TheResult.

Arithmetic Expressions

Arithmetic expressions are exactly what the name implies— expressions which execute a
mathematical operation in VectorScript. These expressions usually consist of numeric values as
operands, either literally or in variables, combined with operators which indicate the mathematical
operation to be performed. These operations can be performed singly, or can be combined or chained
to form larger expressions.

Arithmetic expressions in VectorScript support all the four standard mathematical operations, along
with exponentiation and modulo (remainder) division. VectorScript also contains alibrary of
predefined mathematical procedures to provide support for trigonometric, logarithmic, and other
operations.

Example - Arithmetic Expressions

nyValue := 3 * 2;cost := (basePrice * 1.5) + tax;
slope :=rise / run;cotng := 1/ Tan(angl eVal ue);

When working with arithmetic expressions, it isimportant to consider what numeric types you are
using. The difference in numeric datatypesfound in VectorScript can have serious implicationsin your
calculations, and you will have to consider these differences when writing your scripts. The example

OL-VS18 Vector Script Language Guide

Expressions

VectorScript Language Guide

below provides some insight as to what problems may arise in arithmetic using the different numeric
types.
Example

I ntVal : =6+4; {the result is 10.}

IntVal :=6-4;{the result is 2.}

IntVal :=6*4; {the result is 24.}

IntVal :=6/4;{the result is 2.}

In the example, you may have noticed that the last result seemsincorrect. Thisis not atypo; were you
to divide these numbers and return the result to avariable of type INTEGER or LONGINT, you would
get this value.

This result indicates the difference between calculations involving REAL values and calculations with
INTEGER or LONGINT data. While addition, subtraction, and multiplication of INTEGER or
LONGINT datawill always return awhole number, division will have cases where a fractional result
will be returned. Since INTEGER and LONGINT data definitions do not accommodate fractions, the
result will be dataloss. To prevent this, VectorScript provides a workaround, always converting the
result of INTEGER or LONGINT division to a REAL value. If you were to substitute a variable of
type REAL, the entire result would be returned.

Example
Real Val : =6/ 4; {the result is 1.5.}

VectorScript assumes that you are aware of the possibility of losing data when performing INTEGER
or LONGINT division. It therefore does not generate an error if the result from your calculationsis
assigned to a data type where rounding of the value occurs.

Suppose, however, that you want to divide two integers and retrieve both the whole and fractional parts
of the result, and also preserve the data type of the results. VectorScript provides two alternate
operators for division operations with INTEGER or LONGINT values: DIV and MOD.

DIV providesthe same basic functionality asthe“/” operator, returning the quotient (whole number) of
the division. In this case, though, the quotient result is the same data type as the operands.

MOD provides the opposite result of DIV, returning the remainder, or modulus, as the result. The
MOD result is also returned as a value of the same data type as the operands.

Example

9 DV 4{The result is 2.}
9 MOD 4{The result is 1.}

Vector Script Language Guide OL-VS19

Expressions

VectorScript Language Guide

The** operator allows areal to be raised to real power
2.5**2.0 {The result is 6.25}

Precedence of operations on the same level isleft to right. Multiple instances of exponentiation,
however, are performed from right to left. Parentheses can be used to force a higher precedence of
operations.

Relational Expressions

Expressions can also be used to compare val ues as quantities. These types of expressions, called
relational expressions, are used extensively in VectorScript in making decisions on how to control the
execution of the script.

Relational expressions are comprised of either numeric or string operands, combined with special
relational operators which define how the operands are to be compared. The result of arelationa
expression isaways alogical (TRUE or FALSE) value.
Example - Relational Expressions

j <2 this >=that count =5

total < (ampunt+tax) objectHandl e <> N L

Relational Operators are:

> Gresater than

>= Greater than or equal to
= Equal to

<> Not equal to

<= Lessthan or equal to

< Lessthan

Relational expressions can be combined with an assignment operator to store the result in avariable,
but they are most often used with other statements to form a decision making structure in your script.

Example - Relational Expression
PROCEDURE Test ;

VAR
user Val : REAL;

OL-VS20 Vector Script Language Guide

Expressions

VectorScript Language Guide

FUNCTI ON Get Val uel nRange(user Pronpt : STRING defaul tVal, mnVal,
maxVal : REAL) : REAL;

{

Get Val uel nRange denonstrates using relational expressions

to guarantee a user-entered value falls within a desired range.
}
VAR

t heval : REAL;

done: BOOLEAN;

pronmpt : STRI NG,
BEA N

done : = FALSE;

pronmpt := Concat (userPronmpt, ' [between ',
Num2Str (3, ninval), ' and ',
Num2Str (3, maxVval), '] :');
REPEAT
theval := Real Di al og(pronpt, NunmRStr (3, defaultVal));

I F theval < ninVal THEN
Message(’' You entered a value less than the nmininum’)
ELSE | F t heval > maxVal THEN
Message(’' You entered a val ue greater than the maxi num’)
ELSE
done : = TRUE;
UNTI L done;

Get Val uel nRange : = theVal;

END;

BEG N
userVal := GetVal uelnRange(’ Enter first nunber’, 5, 0, 10);
Message(userVal) ;
user Val := GetVal uel nRange(’ Enter second nunber’, 180, 0, 360);
Message(user Val) ;

END;

Vector Script Language Guide OL-VS21

Expressions

VectorScript Language Guide

Run(Test);

When comparing relational expressions and STRING data using relational operators, the ordering of
the ASCII character set becomes important in determining how relational expressions will evaluate.
The following rules apply when evaluating STRING data:

String values are compared a character at a time, from left to right.

If the ASCII value of one character is greater than the other, the corresponding string is greater
than the other.

If corresponding characters are equal, the comparison point advances to the next character.
If the end of one string is reached, it's value is less than the other string.
If the end of both strings is reached, the strings are equal.

Relational expressions and their results can also be combined into larger expressions, which allow you
to make complex decisions and eval uate objects and documents based on multiple factors. These larger
expressions, called logical expressions, are the last expression type found in VectorScript.

Logical Expressions

Logical expressions may be thought of as an extension of relational expressions. Logical expressions
use relationals as their operands, and when combined with special logical operators, return a boolean
valued resullt.

Logical expressions are used to construct more complex decision and control statements than could be
accomplished by using simple relational expressions. As you become more proficient in using the
VectorScript language and write more complex scripts, you will often need to control execution based
on the results of several inputs.

Example - Logical Expressions
(i <=5) AND (j<>2)
(unitcost < 123.50) OR (quantity > 25)
(value > 12) AND NOT (val ue = 22)

There are five specialized logical operators, which handle the three logical operations availablein
VectorScript: AND, OR, and NOT.

OL-VS22 Vector Script Language Guide

Expressions

VectorScript Language Guide

AND, &
OR, |
NOT

AND Operator

And operator
Or operator
Not operator

An expression using the AND operator will evaluate to TRUE if and only if both operandsin the

expression are TRUE. All other conditions will evaluate to FALSE.

Operand 1 Operator Operand 2 Result
TRUE AND TRUE TRUE
TRUE AND FALSE FALSE
FALSE AND TRUE FALSE
FALSE AND FALSE FALSE

Example - AND Operator

Bool Val 1: =TRUE
Bool Val 2: =FALSE

Bool Resul t: =Bool Val 1 AND Bool Val 2;

evaluatesto FALSE.

OR Operator

An expression using the OR operator will evaluate to TRUE if either operand in the expression is
TRUE. Both operands must be FAL SE for the expression to evaluate to FAL SE.

Operand 1 Operator Operand 2 Result
TRUE OR TRUE TRUE
TRUE OR FALSE TRUE
FALSE OR TRUE TRUE
FALSE OR FALSE FALSE

Vector Script Language Guide

OL-VS-23

Expressions

VectorScript Language Guide

Example

Bool Val 1: =TRUE
Bool Val 2: =FALSE
Bool Resul t : =Bool Val 1 OR Bool Val 2;

evaluatesto TRUE.

NOT Operator

The result of the NOT will be the opposite of it's single operand.

Operand Result
NOT TRUE FALSE
NOT FALSE TRUE

Example - NOT Operator

Bool Val 1: =TRUE;
Bool Resul t : =NOT Bool Val 1

evaluatesto FALSE.

Short Circuit Operators

The two alternate operators for AND and OR operations, & and |, are also known as “ short circuit”

operators.

Inlogical expressions, since both the operands are al so expressions, they must first be evaluated so that
the return result may be used as input for the larger expression. When using AND and OR, both
operands are always evaluated and the result of the logical expression isfound.

With short circuit operators however, the first operand is evaluated and checked by the interpreter. If a
definite result of the entire expression is determined, the second operand is not evaluated; instead, the

expression immediately returns a result.

Thetime saved by using this " short-circuit” operation may seem trivial, but in complex scripts or loops
which perform numerous calls to the logical expression, using these operators can result in scripts

which run much faster.

OL-VS24

Vector Script Language Guide

Expressions

VectorScript Language Guide

Example - Short Circuit Operator
foo: = 3;
bar : =5;
WH LE ((foo > 4) & (bar < 6)) DO BEG N
SysBeep;
END;

In the example, the logical expression will return false and prevent the loop from executing. The first
operand, foo < 4, returns FAL SE(since foo is equal to 3). Once this operand has been evaluated as
FAL SE, the entire expression returns FAL SE, since both expressions must return TRUE for an AND to
return TRUE. In thisinstance, the expression bar < 6 never gets evaluated, saving sometimein
execution.

Short circuit operators also alow notational efficiency when calling fucntions which require their
parametersto be validated. If you need to call afunction which can not accept aNIL handler do the
following:

| F(handl evVal ue <>NIL &
Pr ocessHandl e(HANDLEVal ue)) THEN

Operator Precedence

In VectorScript, operators and operands can be chained together to form complex expressions. The
order in which these operations are performed can have asignificant impact on the result. Thisiswhere
operator precedencematters. All operatorsin VectorScript are assigned alevel of importance, or
precedence. When a complex expression is encountered, this precedence is evaluated to determine
which operation should be performed first, second, and so on. In this way, uniform results are derived
according to the established rules of precedence. The table below lists operator precedencein
VectorScript.

Precedence
0,**, " NOT highest
* /,DIV, MOD, AND, & second
+,-, |, OR third
=, <>, <, >, <=, >= lowest

Vector Script Language Guide OL-VS25

Repetition Statements

VectorScript Language Guide

In VectorScript, your script statements are executed in a linear fashion, one after another until the
entire script has been processed. This type of execution does not lend itself to repeated execution of
script statements to process multiple objects or to perform a progressive operation on the document. To
accomplish this type of repeated execution, you need loop statements.

Program loops provide a means of executing a section of your script repeatedly, but still under your
control. Entry into the program loop is controlled by the entry condition, which determineswhether the
necessary prerequisites exist to execute the loop. Once past the entry condition, the statements which
you have defined as part of the loop will begin to execute. This process will repeat itself indefinitely.
To stop this execution, you must check for a specific condition to indicate that the loop should
terminate. This condition, known as the exit condition, can be determined by whether there are any
objects | eft to process, whether a specific document state exists, or even by a simple numeric count.

As an example, suppose you wanted to create a script which changes the pen foreground color of all
the selected objectsin your document. Your script would need to contain a program loop which would
process each object individually, setting it's pen foreground color.

In your script’s program loop, the entry condition of your loop would determine if any objects are
selected.

The exit condition of your loop would determine if there were any objects left to process; once al the
selected objects are processed, then the loop is exited, and your script can finish.

To stop VectorScript during execution, depress and hold, Command-period (Macintosh) or the
Esc (Windows). In most cases, this will terminate the VectorScript script.

The following example illustrates a typical loop.

Example - Program Loops
PROCEDURE Set Sel Obj ect Col or;
CONST
kNewCol or = 45;
VAR h: HANDLE;
BEG N
h : = FSAct Layer;
VWH LE h <> NIL DO BEG N
Set PenFore(h, kNewCol or);
h : = Next SQbj (h);

OL-VS26 Vector Script Language Guide

Repetition Statements

VectorScript Language Guide

END;
END;
Run(Set Sel Obj ect Col or) ;

In the example, the expression (h <> NIL) acts as a gatekeeper for the larger WHILE-DO repetition
statement. The result of the relational expression directly controls the continuing execution of the loop.

In VectorScript, when you step through alist of objects, NIL isreturned when the end of thelistis
reached. Until the end isreached, there is a value other than NIL in objectHandle, and TRUE is
returned by the expression to the repetition statement. When NIL isreturned (the end of thelistis
reached), FAL SE isreturned, and the loop terminates.

There are three types of repetition statements in VectorScript: FOR-TO/FOR-DOWNTO statements,
REPEAT-UNTIL statements, and WHILE-DO statements

FOR-TO /FOR-DOWNTO Statements

Both types of FOR structures adhere to several rules which govern the layout and function of the
structure:

The counter variable must be a variable of type INTEGER and must be declared within the
procedure where it is used.

Do not try to change the value of the counter variable from within the FOR statement; this can
produce unpredictable results.

If limit expressions are used, the counter variable should not be included in the expressions.

The TO and DOWNTO conditions are inclusive; that is, equal values will evaluate to a TRUE
condition.

For-To

The FOR structure uses a“ counter” or “limit” variable to determine the number of times the specified
statement or statements will be executed.

Syntax

FOR-TO structure

FOR <variable identifier> = initial value TO upper linmt value DO
st at enent ;

Vector Script Language Guide OL-VS27

Repetition Statements

VectorScript Language Guide

FOR <variable identifier> = initial value TO upper limt value DO
BEG N

st at enent ;

st at ement ;

statenment;
END;
Example - FOR Loop

Procedure LoopO01;
VAR
Count : | NTECER;
BEG N
FOR Count: =1 TO 10 DO
Message(Count) ;
END;
Run(Loop01);

With a FOR loop structure, the counter variable isinitialized when the loop is entered. The statement
or statements in the loop structure are then executed, and execution returns to the beginning of the
loop. In the exampl e, the message bar is displayed with the value of the counter variable. The counter
variable is then incremented, the limit expression is evaluated (is Count less than or equal to 10) and
the whole process begins again. When the limit of the loop (10 in the example) is exceeded, theloop is
exited and execution continues with the next statement following the repetition statement.

FOR statemens and compound statements in a FOR structure must have a BEGIN and END statement
to define their bounds. More complex expressions may also be used to define the limits of execution
for the FOR loop. These limit expressions may be of any type previously outlined.

FOR-DOWNTO

There may be times when you may want the count to decrement, or count down, rather than count up.
The FOR structure accommodates this possibility by alowing you to replace the TO reserved word
with DOWNTO.

OL-VS28 Vector Script Language Guide

Repetition Statements

VectorScript Language Guide

Syntax

FOR-DOWNTO structure:

FOR <variable identifier> = initial value DOANNTO | ower limt val ue DO
statement ;
FOR <variable identifier>=initial value DOANNTO | ower limt val ue DO
BEG N
statement ;
st at ement ;

st at ement ;
END;

Example - FOR-DOWNTO loop
Procedure Loop02;
VAR

Count : | NTEGER;
BEA N
FOR Count: =10 DOANTO 1 DO
Message(Count) ;
END;
Run(Loop02);

Other than reversing the direction of the count, the FOR-DOWNTO structure functions in the same
way as a FOR structure. The following is a more complex example of a For Loop:

Example - Complex For loop
PRCCEDURE RRExanpl e;
{
RRExanpl e i s an exanple of using a FOR | oop
to construct a segnent of railroad track with
a very repetitive geonetry.
}
CONST
kTi el nterval = 0. 3;
VAR i : | NTEGER;
total Ties: | NTEGER

Vector Script Language Guide OL-VS29

Repetition Statements

VectorScript Language Guide

PROCEDURE Dr awRRTi e(whi ch: | NTEGER) ;
CONST
kHal fWdth = 0.1/ 2;
kHal f Length = 0.8 / 2;
VAR tie: REAL;
BEG N
tie := which * 0.3;
Rect (tie-kHal fWdth, -kHalflLength, tie+kHal fWdth, kHalfLength);
END;

PROCEDURE Dr awRai | s(howMvanyTi es: | NTEGER) ;
VAR hal f Rai | Lengt h: REAL;

BEG N
hal f Rai | Length : = (howManyTies * kTielnterval) / 2.0;
Rect (-hal fRai |l Length, 0.3, halfRailLength, 0.25);
Rect (-hal fRai |l Length, -0.3, halfRailLength, -0.25);

END;
BEA N
total Ties := 7;
FORi := -totalTies DIV 2 TOtotalTies DIV 2 DO
Dr awRRTi e(i);

DrawRai | s(total Ties);
END;

OL-VS-30 Vector Script Language Guide

Repetition Statements

VectorScript Language Guide
REPEAT-UNTIL Statement

The REPEAT structure will execute the included statements until the limit expression (exit condition)
returns a value of TRUE.

REPEAT and REPEAT-UNTIL statements do not require BEGIN or END keywords even when
executing multiple statements. Thisis because the REPEAT and UNTIL keywords indicate the
statement boundaries to the VectorScript interpreter.

Syntax
REPEAT
st at enent ;
st at enent ;
st at enent ;

UNTI L bool ean expression;
Example - REPEAT-UNTIL
Procedure RUOZ;

VAR

Count , Newval : | NTEGER;
BEG N

Count : =0;

REPEAT

Newval : =Count * 2;
Message(Newval) ;
Count : =Count +1;
UNTI L(Count >10) ;
END;
Run(RUO1) ;

In the example, the statements between REPEAT and UNTIL will be executed until the exit condition
is encountered. The limit expression is not evaluated until after all the statements contained within are
executed, so that even if the limit condition isinitially FALSE, all the statements contained with in the
REPEAT-UNTIL structure will execute at least once. Also, unlike the FOR-TO statement, you are
responsible for both initializing and incrementing your limit (counter) variables. More complex limit
expressions may also be used with the REPEAT statement for greater control over it’'s execution.

Vector Script Language Guide OL-VS31

Repetition Statements

VectorScript Language Guide

The following is a more complex loop:;

PROCEDURE Accel er at e;
{
Accel erate is an exanpl e of using a REPEAT | oop
to simulate the effect of gravity on a falling body.
}
CONST
g = 386.088; {in/sec"2}
kTi nel nterval = 0.015; { Seconds}
VAR yPos, t:REAL;

PROCEDURE DrawBal | (p, t:REAL);
CONST kRadi us = 0. 125;
VAR bal | Label : STRI NG
BEG N
Oval (- kRadi us, p-kRadius, kRadius, p+kRadius);

TextJust (1); {left justify}
Text Si ze(6);
Text Ori gi n(2*kRadi us, p);
bal | Label := Concat(’'d: ', Nun2Str(3, p),
in. at ', Num2Str(3, t), ' sec.’);
Begi nText ; bal | Label
EndText ;
END;
FUNCTI ON Get Bal | Posi tion(t: REAL): REAL;
BEG N
GetBal | Position := -t*t*g/2.0;
END;
BEG N
t :=0.0;
yPos := 0.0;
REPEAT
DrawBal | (yPos, t);
t :=t + kTinelnterval;
yPos := GetBall Position(t);
UNTIL yPos < -4.5;

END;

OL-VS-32 Vector Script Language Guide

Repetition Statements

VectorScript Language Guide
WHILE-DO Statement

WHILE-DO statements contain elements of functionality from both the FOR-TO and REPEAT-
UNTIL statements. In the WHILE-DO statement, like the FOR-TO, the limit expression is eval uated
prior to entering the loop part of the structure. If the WHILE limit does not evaluate to TRUE initially,
no statements will execute; the limit expression functions as both the entry and exit conditions for the
statement. However, unlike FOR-TO, and similar to the WHILE and REPEAT statement, you are
responsible for initializing and incrementing your limit variables.

Syntax
VWHI LE bool ean expressi on DO
st at enent ;
VWHI LE bool ean expressi on DO
BEG N
st at enent ;
st at enent ;
st at enent ;

END;
Example - WHILE-DO Structure
Procedure T1;
VAR
Count : | NTEGER;
BEG N
Count : =0;
VWHI LE Count < 10 DO BEG N
Message(Count) ;
Count : =Count +1;
Wait (1);
END;
Message(‘ Al'l done.’);
END;
Run(T1);

Vector Script Language Guide OL-VS33

Conditional Statements

VectorScript Language Guide

In the example the value of Count isinitialized, so that when the conditional for the WHILE-DO loop
isencountered, it is TRUE. Theloop is entered, and processes until Count >= 10. The loop then exits
and execution continues.

Infinite Loops

Animportant item to consider when using REPEAT or WHILE statementsisthe careful choice of limit
expressions. In the example above, if the greater than (>) sign were accidentally entered as aless than
sign (<), the loop would not execute at all. In other cases, a subtle mistake such as this can cause an
infinite loop, which never reaches an exit condition. Thiswill often result in an application crash. Even
if you do not experience problems this severe, incorrectly choosing your limit expressions can result in
your loop failing to complete it’s task properly. If your scripts are returning bad results, or worse,
causing application crashes, you should always double check the limit expressionsin your repetition
statements.

To stop VectorScript during execution, depress and hold, Command-period (Macintosh) or the
Esc (Windows). In most cases, this will terminate the VectorScript script.

Conditional statements are used to control the“ program flow” of the VectorScript script. They are used
to make decisions asto what other statements need to be acted upon, and do so by evaluating a
particular condition. Relational or logical expression statements provide the actual decision making
ability for the conditional statement, which then controls the path of further execution. In VectorScript
thereis one type of conditional statement, the IF-THEN-EL SE statement.

IF-THEN-ELSE Statement

The IF-THEN-EL SE statement uses relational and/or logical expressions to determine the TRUE-
FALSE validity of acondition related to the document, an object, or the script. Based on the result, the
execution of the script can take one of two paths. If the expression or value is evaluated to TRUE, the
statement or statements which follow the THEN branch are executed. If FALSE isreturned as aresult,
the EL SE branch is taken.

Syntax

I F (NOT) |ogical expression THEN
st at enent

OL-VS34 Vector Script Language Guide

Conditional Statements

VectorScript Language Guide

ELSE
st at enent ;
Example - IF-THEN-ELSE structure
Procedure ASanpl e;
VAR
I nt eger Val : | NTECER;
BEG N
I nt eger Val : =8;
| F(I ntegerVal > 7) THEN
Message(‘ Val ue was greater than 7')
ELSE
Message(Val ue was | ess than or equal to 7');
END;
Run(ASanpl e) ;

In the example, arelational expression isused to return aTRUE or FAL SE result, which is then used to
determine what path execution should take. Since IntegerVal isequal to 8, the THEN path istaken, and
the appropriate message is displayed. If you changed the value to 6, the execution would follow a
different path, executing the statements found after the EL SE reserved word.

The expressions which determine the branching of execution can be as simple or complex as your
needs warrant. Several expressions can be used to test various conditions, and thereby define a very
explicit circumstance under which a series of statements will execute. The next exampleillustrates the
use of such complex expressions.

IF-THEN-EL SE statements can al so become more complex in terms of the statements executed in the
two branches of the structure. Multiple (compound statements can be executed in each branch, and
additional nested conditional or repetition can also be included in these branches.

Syntax

I F (NOT) |ogical expression THEN
BEG N

st at enent ;

st at enent ;

st at enent ;

Vector Script Language Guide OL-VS35

Conditional Statements

VectorScript Language Guide

END

ELSE BEG N
st at ement ;
st at ement ;

st at enent ;
END;
Example - IF-THEN-ELSE with complex expression
Procedure ASanpl e;
VAR
I nt eger Val : | NTECER;
BEG N
I nt eger Val : =90;
IF((IntegerVal > 0) AND (IntegerVal < 90)) OR
((I'ntegerval > 180) AND (IntegerVal < 270)) THEN
Message(‘ Tangent is positive.’)
ELSE
Message(‘ Tangent is negative or value out of range’);
END;
Run(ASanpl e) ;

You can specify avery complex set of conditions which must be satisfied for a statement to be
executed. In the example, only angle valuesin a certain range will be considered as generating a
positive tangent value.

Note the use of the parentheses to control the precedence of evaluating the different expressions. When
using multiple expressions to evaluate a condition, parentheses should be used to define the boundaries
of the expressions, and indicate to the VectorScript interpreter that they should be evaluated first.

In the example, two levels of parentheses were used, one to obtain operands for the AND operation,
and the second to return the results of the AND operations as operands for the OR operation. The result
of the OR operation determines the path to be taken in the structure.

Syntax

| F (NOT) bool ean expression THEN
BEG N

OL-VS36 Vector Script Language Guide

Conditional Statements

VectorScript Language Guide

st at enent ;
stat enent ;

st at enent ;
END
ELSE |F bool ean expression THEN
BEG N

st at enent ;

st at enent ;

st at enment ;
END
ELSE BEG N
st at enment ;
st at enment ;

stat enent ;
END;
Example - IF-THEN-ELSE with compound statements
Procedure ASanpl e;

VAR

Real Val : | NTECER,;
BEG N

Real Val : =0;

Real Val : =Real Di al og(‘ Enter a width’,’6");
| F REALVal < 6.0 THEN BEG N
Real Val : =Real Val * 1. 25;
Message(Real Val) ;
END
ELSE BEGQ N
Real Val : =Real Val *1. 1;
Message(Real Val) ;
END;
END;

Vector Script Language Guide OL-VS37

Case Statement

VectorScript Language Guide
Run(ASanpl e) ;

In the example, multiple statements are specified for each branch of the IF-THEN-EL SE structure. If
the value entered by the user islessthan 6, the value will be multiplied by 1.25 and displayed;
otherwise, the value is multiplied by 1.1 and displayed.

A CASE statement allows the result of a single expression to be compared to a number of constant
values. VectorScript can execute a CASE statement more efficiently then a series of nested If-THEN
statements, although the CASE statement is not quite as flexible.

Example - Case statement

CASE i nt eger Val ue OF
1: Message(’ One’);
2: Message(’ Two’);
3: Message(’ Three');
OTHERW SE Message(’ Unknown Number’);
END;

{

The case | abel s nmust be conputable at script conpilation tinme. They
cannot depend on variables or function results. Wen the CASE
statenent executes,if an exact nmatch is found between integerVal ue
and one of the case labels, the statenment followi ng that |abel is
executed and then execution proceeds at the statenent follow ng
END. If an OTHERW SE cl ause exists and no match was found, the
statement foll owing OTHERW SE i s executed. If there is no OTHERW SE
and no match was found, then execution continues at the statenent

follow ng the END.

OL-VS38 Vector Script Language Guide

Control Statements

VectorScript Language Guide

Control statements are a special type of statement which allows the programmer to have direct control
over the program flow. The single control statement available in VectorScript is the GOTO statement,
which interrupts execution and allows you to jump to a predefined location in the script.

Syntax
GOTO <l abel identifier>

Where the label is a corresponding numeric identifier located in the code which indicates the
destination of the jump.

Example - GOTO statement
PROCEDURE GOTCExanpl €;
LABEL
911;
BEG N
I F YNDi al og(’ Are you done?’) = TRUE THEN
GOTO 911;

| F YNDi al og(’ Are you sure you are not done?’) = TRUE THEN
GOTO 911;

| F YNDi al og(’ Are you positive?') = TRUE THEN
GOTO 911;

Message(’ You cannot be convinced.’);

911: { bail out - GOTGCs are nost useful in processing }
{ errors or cancellations during a | ong sequence }
{ of operations }
END;
Run(GOTOExanpl e) ;

GOTO statements can be used to exercise agreat deal of control over script execution. In practice
however, use of GOTO statements should be carefully considered, asimproper use of GOTO can result
in unpredictable behavior from VectorScript scripts, and can make problems very difficult to trace and

Vector Script Language Guide OL-VS39

Procedures and Functions

VectorScript Language Guide

diagnose. Good program design usually eliminates the need for using GOTO statements at all in
VectorScript scripts.

In VectorScript, procedures and functions are the basic " action” unit for performing tasks. The scripts
which you create function as aunit, performing a particular task when called. On the smallest scale, the
predefined VectorScript procedures and functions which you use in your code perform tasks for the
VectorScript script you have defined. 1t is no accident that your script begins with the Procedure
statement. In many ways your VectorScript script is no different than VectorScript’s predefined
procedures and functions. To the VectorScript interpreter, they are almost identical .

Procedures

In VectorScript, aprocedure is aseries of statements grouped together and called as a unit to perform a
specific task. Procedures can receive input in the form of parameters, and can return data back through
them as well using variable parameters.

Procedure statements have two components: the procedure name, or identifier, and it's parameters,
which supply needed data to the statement.

Syntax

Procedure statement:

<procedur e name>(parami, paran®, .., param(VAR par ani, paran?, ..));

Procedure declaration:

<Pr ocedure nane>;
<definitions section>
<decl arati ons section>
(<subroutine decl arations>)
BEG N
<staterment section>
END;
Run(<Pr ocedur e name>);

OL-VS40 Vector Script Language Guide

Procedures and Functions

VectorScript Language Guide

The general format is:

Procedur e nane(paraneterl, paraneter?2, .);
Example - Procedure statement
Rect (0,0, 2, 2);

In the example, the procedure statement, when called, will draw arectangle. The rectangle will be
defined by the parameters (0,0) and (2,2), which represent two corners of the rectangle. You can also
define your own procedures for use in your scripts.

Functions

A function is subroutine which is designed to specifically compute and return a value. Instead of
returning aresult through avariable parameter, the result is returned directly. As such, functions can be
used as operands in expressions, because the function call itself represents avalue. In al other ways,
functions are very similar to procedures; they also must be declared, and they can accept input viaa
formal parameter list. Let'stake alook at how functions can be used to our advantage in VectorScript.

Example - Functions
Procedure Cal cYt hPower ;
VAR
Base, Exponent , Resul t : REAL;
{—subroutine to calculate x raised to y—%}
Functi on Rai se2Power (t heBase, t heExp: REAL) : REAL;

BEG N
Rai se2Power : =t heBase* *t heExp;
END;
BEG N
Function Base: =Real Di al og(*' Enter base value’,’1');

reunsvalueto Exponent : =Real Di al og(*‘ Enter exponent value’',’0');
variable result .
Resul t : =Rai se2Power (Base, Exponent) ;
Message(Base,’” to the ', Exponent,’th = ‘', Result);
END;

Run(Cal cYt hPower) ;

Functions are indeed similar to procedures. You must declare them so that the VectorScript interpreter
knows what input the function will accept, and what it will return.

Vector Script Language Guide OL-VS41

Procedures and Functions

VectorScript Language Guide

With the function in the example, the returned value is passed back to the main program directly. In
order to do this, you must declare the type of data that will be returned, and direct the result out of the
subroutine appropriately. To direct the data, instead of passing the final result to avariable, you use the
name of the function. This specialized syntax is understood by the interpreter, and the valueis handled
accordingly. This direct return is what allows a function to be used as an operand in an expression.

Function calls can be used with expressions to condense and streamline code, resulting in faster scripts.
The next example shows how to use afunction in a conditional expression.

Example - Functions and conditional expressions

Procedure Cal cYt hPower ;
VAR
Base, Exponent , Resul t : REAL;
{—subroutine to calculate x raised to y—3}
Function Rai se2Power (t heBase, t heExp: REAL) : REAL;
BEG N
Rai se2Power : =t heBase**t heExp;
Function is END;
usedas BEG N
:’52{;?1‘;?“ Base: =Real Di al og(‘ Enter base value',’ 1');
expressiion Exponent : =Real Di al og(' Enter exponent value','0');
| F (Rai se2Power (Base, Exponent) < 0) THEN
Message(' Odd exponent val ue')
ELSE
Message(' Even exponent or positive base value');
END;
Run(Cal cYt hPower) ;

Since the function returns avalue, it can be used anywhere a value would ordinarily be used. This
flexibility makesit possible to create complex expressions which can make specific decisions based on
the results returned by your subroutines.

Defining Subroutine Procedures and Functions

The procedures and functions you define work almost identically to the predefined onesthat are part of
the VectorScript language. They can perform calculations, process data, or any of the other tasks that
can be performed by the packaged versions. Subroutines cannot be run on their own, but will perform
part of the overall work of the main script.

OL-VS42 Vector Script Language Guide

Procedures and Functions

VectorScript Language Guide

Let'slook at asimple example of a subroutine procedure to learn more about how they are defined and
used.

Example - Subroutine
Procedure SwapTwoNuns;
VAR
I nt Val uel, | nt Val ue2: | NTEGER;
{—the subroutine—3}
Pr ocedur e Perfor nSwap;
VAR
Tenp: | NTECER,;
BEG N
Tenp: =I nt Val uel,;
I nt Val uel: =I nt Val ue2;
I nt Val ue2: =Tenp;
END;
{———
BEG N
I ntVal uel: =IntDial og("Enter first value','0");
I nt Val ue2: =IntDi al og(' Enter second value',’0');
Per f or nBwap;
Message(' First value is now :',IntValuel);
Wait(1);
Message(' Second value is now :',IntValue2);
Wait(1l);
d r Message;
END;
Run(SwapTwoNuns) ;

Subroutine call

In the example, we take input from the user in the form of two integer values. The subroutine we have
defined is used to swap the numbers, which are then displayed.

Defining your subroutine is almost the same as defining a script. When defining the subroutine, you
use the same basic structure defining the statement and (optionally) declaration parts, and you begin
the definition with the Procedure statement. The one major difference is the absence of the Run
statement; this statement is only used at the end of afull fledged VectorScript script, to tell the
VectorScript interpreter to execute the script in VectorWorks.

Vector Script Language Guide OL-VS43

Procedures and Functions

VectorScript Language Guide

Note the position of the subroutine in the script structure; subroutines must always be defined before
the beginning of the main part of the script. If they are not defined in this way, the subroutines will not
be available to your script.

The subroutine in the example used the integer variables directly from the main part of the script by
accessing global variables. You can aso pass them as parameters to the subroutine. This method has
advantages over direct reference; we will explore these alittle bit later. For now, let’s see how input
parameters are defined for subroutines.

Example - Subroutines with Input Parameters
Procedure SwapTwoNuns;
VAR
I nt Val uel, | nt Val ue2: | NTECER;
{—the subroutine—}
Procedure PerfornSwap(theFirst,theSecond: | NTEGER);
VAR
Tenp: | NTECER,;
BEG N
Tenp: =t heFirst;
t heFi r st : =t heSecond;
t heSecond: =Tenp;
END;
BEG N
I ntVal uel: =IntDial og(' Enter first value','0");
I nt Val ue2: =IntDi al og(' Enter second value','0');

Per f or mBwap(| nt Val uel, | nt Val ue2);
Subroutine call

Message(' First value is now :',IntVal uel);
Wait(1l);
Message(' Second value is now :',IntValue2);
Wait(1);
d r Message;

END;

Run(SwapTwoNuns) ;

The VectorScript interpreter treats your subroutine procedures and functions just like the predefined
ones; consequently, you have to tell the interpreter what to expect as input when using your procedures
to perform tasks. In the example, we passed the two integer values as parametersto our subroutine. The
interpreter knows from the declaration to expect that two integer values will be passed into the

OL-VS44 Vector Script Language Guide

Procedures and Functions

VectorScript Language Guide

positions we defined, which are also known as the formal parameters of the subroutine. The variables
were then used in the subroutine and the swap was performed. The variable used to temporarily store
one of the integer values is defined as part of the subroutine, and is known as an actual parameter.

The advantage in using parametersis that we could easily pass two other variablesto the subroutine to
be swapped; we could then use the subroutine as many times as we wished in our main program. This
modular approach can result in programs which are easier to read and understand, and which are
smaller and which run faster.

Parameter passing has another distinct advantage; it also allows for passing data back from the
subroutine to your main script. Thistwo-way data exchange feature is the key to the modularity of
subroutines.

To pass data back from your subroutine, you use what are known as variable parameters, which are
defined in the subroutine's formal parameter list with the reserved word VAR. You can then use the
variable parameter in your subroutine calculations, and when the subroutine completes, the valueis
passed into whatever variable you specify in the call in your main script.

Example - Passing data using variable parameters
Procedure Cal cYt hPower ;
VAR
Base, Exponent, Resul t: REAL;
{—subroutine to calculate x raised to y—}
Procedure Rai se2Power (t heBase, t heExp: REAL; VAR Val ue: REAL) ;

BEG N
Val ue: =t heBase**t heExp;
END;
BEG N
Function Base: =Real Di al og(' Enter base value','1");
accepts values Exponent : =Real Di al og(' Enter exponent val ue','0');
as Input Rai se2Power (Base, Exponent , Resul t);
Message(Base,' to the ', Exponent,'th = ', Result);
END;

Run(Cal cYt hPower) ;

In the example, the input values are passed as the first two values in the parameter list of the
subroutine, and the result is returned into the variable occupying the third position in the list.

Vector Script Language Guide OL-VS45

Program Scope

VectorScript Language Guide

The use of variable parameters makesit very simple to exchange data between your main program and
your subroutines, doing so in away that makes it very easy to understand and which makes your
subroutines easy to reuse without modification.

As you begin to use subroutines in your scripts, it becomes important that you understand the concept
of program scope.

Program scope describes the “realm”, or area, where the variable is considered defined and valid, and
may be used to represent avalue or action. The scope of avariable can be defined asa* program block”
of the program, or an area comprising one definition, one declaration, and one statement part. A
subroutine, whether it is a procedure or afunction, is one block; the main script itself isalso ablock. If
avariable is defined within ablock (declared at the beginning of the block), it's scopeis said to be that
block, plus any blocks that may be nested inside. Variables declared as part of the main script are said
to be “global” in scope; that is, they are valid everywhere throughout the program.

This concept has important implications for accessing data. If avariable is declared as an actual
parameter of one of your subroutines, you cannot access it from your main program. It may, however,
be used by your subroutine, and any subroutines nested within. The next example illustrates this
concept.

OL-VS46 Vector Script Language Guide

Program Scope

Example - Program Scope
Scope of WoodPrice

Scope of CalcCost

Scope of
AddTax

VectorScript Language Guide

Procedure WodPri ce;
CONST
Tax=0. 05;
VAR
Boar dFeet, Pri ce, Tot al Cost : REAL;
Procedure Cal cCost (Feet, PPF: REAL; VAR Cost: REAL) ;
VAR
baseCost : REAL;
Functi on AddTax(RawCost : REAL) : REAL;

BEG N
AddTax: =RawCost +(RawCost * Tax) ;
END;
{-begin Cal cCost -}
BEG N

baseCost : =Feet * PPF;
Cost : =AddTax(baseCost) ;

END;

{—end Cal cCost -}

{—Dbegin mai n—3

BEG N
Boar dFeet : =Real Di al og(' Enter no. of feet','0");
Price: =Real Di al og(' Enter price per foot'," 0");
Cal cCost (Boar dFeet, Pri ce, Tot al Cost) ;
Message(' Total cost is $', Total Cost: 6:2);

END;

{—end mai n—3

Run(WbodPri ce);

The exampl e has three blocks, or areas of scope: the main procedure(\WoodPrice), the
subrouting(CalcCost), and the function(AddTax). In the example, the total cost of the wood is returned
viavariable parameter to the main program for output. If we tried to reference the value directly, by
replacing Total Cost in the message procedure with Cost, we would get an error. Thisis because in the
main program, Cost is undefined; it's scope does not extend to the main program.

Vector Script Language Guide OoL-VS47

Recursion

VectorScript Language Guide

On the other hand, if we wanted to access the board feet directly, we could, by replacing Feet with
BoardFeet. Because BoardFeet is defined in the main program, it can be referenced in any subroutine;
in other words, it's scopeis global.

Another example of thisisthe use of the constant Tax. Because it is declared in the main program, we
can access it directly in the function AddTax. This makes adjusting the tax rate very ssmple, aswe only
need change one value and our entire script will still work properly.

Program scope appliesto the al identifiers (constants, variables, and subroutines) within VectorScript.
The figure below shows another way of illustrating the concept of program scope. Scope may be
aternately thought of asaboundary around a particular program block; the identifier isvalid anywhere
within the boundary, and invalid outside of it.

Figure - Program Scope

Identifiers (internal subroutines, variables, and constants) defined in each of the blocks shown in the
figure would then have scope as follows:

Block scope
main routine ‘A’ AB,CD
subroutine ‘B’ B,C.D
subroutine ‘' C’ CD
subroutine ‘D’ D

Past versions of MiniPascal have not supported recursively called functions. VectorScript fully
supports recursion. Be aware that while VectorScript attempts to gracefully handle infinitely recursive
code, it can cause VectorWorks to crash.

Example - Recursion

FUNCTI ON Count Obj ect s: LONG NT;
{

Count Obj ects is an exanple of using recursion
to traverse a VectorWrks draw ng whi ch contains hierarchical
groups.

}

OL-VS48 Vector Script Language Guide

Recursion

VectorScript Language Guide

VAR count : LONG NT;
r oot : HANDLE;
| evel s: LONG NT;
PROCEDURE Wit eNodel nfo(l evel : LONG NT; h: HANDLE) ;
VAR i : LONG NT;
obj Type: | NTEGER,
BEG N
FORi :=1 TO |l evel DO
Wite(" ');
obj Type := CGet Type(h);
CASE obj Type OF
2: Wite('Line');
3: Wite(' Rect');
4. Wite(' Oval');
5: Wite(' Polygon');
6: Wite('Arc');
10: Wite(' Text');
11: Wite(' Goup');
OTHERW SE Wi te(' Unknown Type');
END;
WiteLn(' (', objType, ')');
END;

{

The CountList subroutine is called for the root layer. It

| oops through each object in the |ayer and processes it. If
The object is a group, Countlist recursively calls itself
to process all objects in the group. Because VectorWrks
lists are guaranteed to be finite, this will never cause
infinite recursion.

}

PROCEDURE Count Li st (node: HANDLE) ;
VAR chi | d: HANDLE;
BEG N
VWHI LE node <> NIL DO BEG N
Wit eNodel nfo(l evel s, node);

Vector Script Language Guide OL-VS49

Recursion

VectorScript Language Guide

child := FInG oup(node);
IF (child <> nil) THEN BEGQ N
{node has children, so we recursively count themnt

levels := levels + 1;
CountList(child);
levels := levels - 1;
END;
count := count + 1;
node : = Next Cbj (node);
END;
END;
BEA N
l evels := 0;
count := 0;
root := FQbject;
Count Li st (root);
Count Qnj ects : = count;
END;

Thisisthe recursion output:

Goup (11)
Goup (11)
Rect (3)
Line (2)
Line (2)

Text (10)
Text (10)
Rect (3)
Rect (3)
Goup (11)
Goup (11)
Rect (3)
Line (2)
Line (2)
Text (10)

OL-VS50 Vector Script Language Guide

Arrays

VectorScript Language Guide

Text (10)
Pol ygon (5)

Array variables are amethod of storing related data under a single variable reference, allowing alarge
amount of information to be referenced from a single item. Arrays store their information in locations
that are contiguous, that is, one right after the other, making it possible to sort or methodically process
large amounts of data.

Arrays are declared in VectorScript as follows:
<array nane> : ARRAY[1l..n] OF <data type>;

where n is between 2 and 32767. The values within the brackets represent the size, or bounds, of the
array, which is the number of places that may hold data.

To retrieve avalue from an array requires two components: the name of the array and the location, or
array index, of the data which we want to retrieve. Array definition and use is shown in the example
bel ow.

Example - Arrays
Procedure ArrayExanpl e;
VAR
i | NTEGER;
Wrds : ARRAY[1l..7] OF STRING
Resul t: STRI NG,

BEGA N
Words[1] : ="' This ';
Wrds[2]:="is ";

Words[3]:="an ';
Wor ds[4] : =" exanpl e ';
Words[5]: =" of ';
Words[6]:="array ';
Words[7] : = usage.';
i:=1;
WH LE i < 8 DO BEGA N
Resul t: =Concat (Resul t, Words[i]);

Vector Script Language Guide OL-VS51

Vectors

VectorScript Language Guide

=i +1;
END;
Message(Resul t);
END;
Run(ArrayExanpl e) ;

The exampl e shows how easily data can be accessed by moving along, or traversing, the array. While
the example shows how the array is traversed for output, the same type of traversal can be adapted for
input as well.

Arrays can aso be two dimensional, with the data values forming a grid pattern rather than alinear
order. The format for declaring two dimensional arraysis

<array name> : ARRAY[1l..m 1l..n] OF <data type>;

The corresponding call to retrieve a data value would then require two index values to identify the
data’s position within the array.

Arrays of three or more dimensions are not allowed in VectorScript. Arrays are powerful tools for
implementing search and sort routines in VectorScript. These types of tools extend the data processing
capabilities of VectorWorks far beyond that of most other CAD packages.

Vectorsin VectorScript are specialized data types used to provide vector calculation capabilities within
the language. Vector quantities are an important tool in the physical sciences, aswell asin mechanical
and other types of design. While VectorScript does not provide sophisticated tools for analyzing
vectors, all basic vector operations are supported in the language. In VectorScript, a vector variable is
declared asfollows:

<vari abl e nanme> : VECTOR

A vector stores three values of type REAL. Each value represents alocation along the x, y or z axis.
Values within the vector may be stored or retrieved through the use of an index in therange 1 to 3.

Example - Vector value retrieval

PROCEDURE Test ;
VAR

aVector : VECTOR;
BEG N

OL-VS52 Vector Script Language Guide

Search Criteria

VectorScript Language Guide

aVector[1] := 1;
aVector[2] := 1;
aVector[3] := 0;
Message(‘ Vector - X ‘,aVector[1],’', Y: ‘,aVector[2],’', Z
‘,aVector[3]);
END;
RUN(Test) ;

The following vector operations are supported in VectorScript (‘v and ‘w’ are vectorsand ‘K’ isa
nonzero real number):

Negative -v
Addition V+Ww
Subtraction V-w
Multiplication with a k*v
scalar

Division by ascalar v [k
Dot Product Voew
Cross Product vV*w

While vectors may appear to be similar to any other basic data type, because they hold several values
and are similar to arrays, they cannot be passed as parametersto or returned from user defined
subroutines.

VectorScript provides a number of procedures which allow the user to make use of the attributes of
objects as amethod of selecting them, aswell asretrieving information from them. These procedures
are known asinquiry, or search, routines.

Each graphic object within the document has attributes which can be read to identify the object. Some
of these attributes include layer, class, linestyle, and object type. Inquiry routines make use of a user
specified search criteriato go through the list of objects in the document and find any objects which
match the specified criteria

Vector Script Language Guide OL-VS53

Search Criteria

VectorScript Language Guide

The example below illustrates a simple inquiry operation, counting all the objectsin a particular class.
In more complex documents this type of procedure can be extremely useful for retrieving all sorts of
information.

Example - Inquiry procedure

Procedure CountParts;
VAR
NumPart s: LONG NT;
BEG N
NumPart s: =Count ((C=" Pl unbi ng Fi xtures’));
Message(NunParts,’ fixtures were found');
END;
Run(Count Parts);

In the example, note that the inquiry procedure’s parameter. This specially formatted parameter is the
search criteria. Each search criteriais comprised of two parts: the attribute type and the attribute
specifier.

Example - Search criteria

Attribute

Type C=' Edged’

Attribute Specifier

Thefirst part, the attribute type, identifies what type of attribute is to be searched across for a match.
Attribute types can include layers, classes, pen patterns, selection status, or many others. This part of
the criteria‘narrows' the search, allowing for quick processing of objects. The second part, the
attribute specifier, is the value to be matched, also known as the target value. The inquiry routine
compares this value against the value assigned to the object, and performs the appropriate action if a
match has occurred. In the case of the above example, when a match to the criteriais found, the
running count of objectsisincremented by 1. When the end of the object list is reached, the procedure
returns atotal count of objects matching the criteria.

OL-VSH Vector Script Language Guide

Search Criteria

VectorScript Language Guide

Syntax

All search criteria conform to afew simple rules of syntax. These rules make it possible for
VectorWorks to quickly search the object list by using an internal search function which usesauniform
set of rulesfor it's search.

All individual search criteria must be enclosed in parentheses, even when specifying only one
criteria. These parentheses are in addition to the normal parentheses which contain the
parameters for the function or procedure.

All text string attribute specifiers must be enclosed in quotes. This includes layer names,
classes, etc. A good rule of thumb is if the specifier is something that can be modified by an
editable text field in VectorWorks (layer names, for example), then it should be enclosed in
guotes.

Example - Syntax

Search Function Criteria in parenthesis

nunRects: =Count ((T=Rect)) & (C='Detail"'));

Multiple criteria separated by ~ String specifier in quotes
ampersand

Narrowing the Search

Search criteria can be combined to further narrow and define an inquiry. This allows for more
flexibility in creating specific searches to find small sets or single objects, and is known as compound
search criteria.

When specifying compound search criteria, each criteriais formatted according to normal rules of
syntax, then separated by an ‘&’ symbol or the reserved word AND. This delimiter includes the
different criteria as part of asingle search inquiry. For example, suppose a facilities manager had a
document which contained polygons representing room areas for each room on every floor of an office
building If it was necessary to derive a sum total of all the room areas on the second floor of the
building, a single search criteria could be constructed to perform this operation. The example below
shows the inquiry function call.

Example

Pr ocedur e AreaSecond;

OL-VS55 Vector Script Language Guide

Search Criteria

VectorScript Language Guide

VAR
Tot Ar ea: REAL;

BEG N
Tot Area: =Area((C=" Room Areas’) AND (L='Second Fl oor'));
Message(‘ Area total for 2nd floor : ‘, TotArea);

END;

Run(Ar eaSecond) ;

The compound criteria narrows the search, thereby allowing specific information to be extracted from
the document.

Multiple Search Criteria

Search criteria can also be specified to search across multiple attribute specifiers for a single attribute
type. In this way, subsets of the total document can be searched, providing another method of
narrowing the overall search. This method of searching is known as multiple search criteria.

Multiple search criteria have a specia formatting which allows VectorWorks' search function to
process through the attribute specifiersasalist. In technical terms, the attribute specifiers are passed as
aparameter list to the search function. The multiple criteriais specified as follows:

(attrib type IN[attrib specifier,attrib specifier,.])

Asan example, suppose it was necessary to count all symbols named ‘ Part 2400’ and ‘ Part 5230" inthe
document. This could be accomplished using two separate inquiries and adding the results, or could be
performed using a multiple search criteria. The example below shows the multiple search inquiry.

Example - Multiple search criteria

Pr ocedur e Count Enp;

VAR
Tot al : LONG NT;

BEG N
Total : =Count ((S IN [‘Part 2400',' Part 5230']));
Message(‘ Total count was ‘, Total);

END;

Run(Count Enlp) ;

Even more complex searches can be created by combining the two methods just described. Suppose it
were necessary to format a drawing for export to DXF to ensure a good import into AutoCAD®, and

OL-VS56 Vector Script Language Guide

Search Criteria

VectorScript Language Guide

that all objects with a pen pattern of -5 on layers ‘New Construction” and ‘ Proposed Site Mods' had to
be selected for further processing. Aninquiry could be constructed to specifically select these objects.
Theinquiry for thisis listed below.

Example - Complex search inquiry
Procedure ProcessSel ect;
BEG N

Sel ect Qbj ((PP=5) AND (L IN [‘New Construction',’ Proposed Site
Mods'1));

END;
Run(ProcessSel ect) ;

Records and Fields

Another way of using inquiry routines involves using records and fields. Using records and fields as
attribute specifiers adds significant power to the inquiry routines, since the data within records can be
used as a basis for searches.

The syntax for searching by record is very similar to the syntax for multiple criteria, except that the
name of therecord in quotesis used asthe specifier. An example of arecord name as attribute specifier
is shown below.

Example

Procedure NunmRex;

VAR
RecCount : LONG NT,;

BEG N
RecCount : =Count (R IN [Part Data']);
Message(‘ Total Recs :’, RecCount);

END;

Run(NunRex) ;

This example would count all the ‘ Part Data’ records attached to objects in the document.
Fields can also be used to create inquiries. The example below shows the format for a record-field

attribute specifier.

Example - Record Field attribute specifier

Pr ocedur e NunRex;
VAR

OL-VS57 Vector Script Language Guide

Search Criteria

VectorScript Language Guide

RecCount : LONG NT;

BEG N
RecCount : =Count ((‘ Part Data’'.’ Cost'));
Message(‘ Total Recs :', RecCount);

END;

Run(NunmRex) ;

If this example seems abit odd to you, it should. Thereis no inherent advantage to using arecord field
specifier to perform a count of records, since each ‘ Part Info’ record will havea* Cost’ field. In the next
section, though the advantages of record field specifiers will become apparent.

Operators in Attribute Specifiers

Inquiry routines in VectorScript support one additional feature which adds yet more flexibility and
power to their abilities. Record field attribute specifiers support the use of relational operatorsto
compare field data to a specific value. When used with these operators, this method of performing
inquiries takes on new importance. For example, suppose it was necessary to select all fixtures less
than a certain price in order to update their pricing. An inquiry could be constructed which would
perform just such an operation. The following example illustrates this inquiry.

Example - Rec Field Search with Operators
Procedure ChoosePart;
BEG N
SelectQbj ((* Part Data’ .’ Cost’ < 100.00));
END;
Run(ChoosePart);

Using thisinquiry, only objects whose ‘ Cost’ field has a value less than 100.00 will be selected. The
power of thisis evident, sinceit allows objects to be matched according to very specific criteria. This
method can also be combined with the compound and multiple search criteria methods to producer
inquiries which match specific objects or sets of abjects.

Other Search Criteria

In addition, there are a couple of other criteria which add some additional flexibility to inquiry
routines.

OL-VS58 Vector Script Language Guide

Search Criteria

VectorScript Language Guide

Select All Objects

This search criteria can be used to process every object in the document, regardless of visibility, layer,
or lock status.

Example
Count (Al'l);

counts all objects.

Visibility Status

Visibility status can be used as a criteria as well. When this criteriais used, the inquiry routine will
search all visible or invisible objects.

Example
Count ((V=Fal se));

counts all invisible objects.

Selection Status

Selection status may be used to further narrow searches, or as acriteria by itself. The criteriawill
specify either al selected or all deselected objects.

Example
Count ((SEL=Fal se));

counts all deselected objects.
Count ((L="First Floor’) AND (SEL=True));

counts the slected objects on layer *First Floor'.

OL-VS59 Vector Script Language Guide

Search Criteria

VectorScript Language Guide

Search Criteria Parameters

Attribute Type Identifiers

Attribute Type | dentifier ~ Example
Arrowhead AR (AR=1)
Class Name C (C=Tile)
Every Object All All
Fill Background FB (FB=23)
Fill Foreground FF (FF=42)
Fill Pattern FP (FP=3)
Layer Location L (L="Basement')
LineWeight Lw (Lw=2)
LineStyle PP (PP=2)
Object Name N (N='Brick’)
Object Record R (RIN['Doors])
Object Type T (T=Rect)
Pen Background PB (PB=Black)
Pen Foreground PF (PF=Black)
Pen Pattern PP (PP=1)
Selected Status Sel (Sel=True)
Symbol Name S (S='Window")
Visibility \Y, (V=True)
InSymbol InSymbol InSymbol
Attribute Field Identifiers
Attribute Field Attribute Field Identifier ~ Example
Object Name String of 20 or less (N="Brick’)
characters
Class Name String of 20 or less (C=Tile)
characters
Layer Location String of 20 or less (L="Basement')

characters

OL-VS-60

Vector Script Language Guide

Search Criteria

VectorScript Language Guide

Attribute Field Attribute Field I dentifier ~ Example
Fill Pettern FP followed by fill pattern (FP=3)
number
LineWeight LW followed by line (Lw=2)
weight number
LineStyle PPfollowed by penpattern (PP=2)
number
Object Type:
Rectangle Rect (T=Rect)
Ova Ova (T=0Oval)
Polygon Poly (T=Poly)
Polyline Polyline (T=Polyline)
Arc Arc (T=Arc)
Quarter Arc QArc (T=QArc)
Line Line (T=Line)
Text Text (T=Text)
Rounded Rectangle RRect (T=RRect)
2D Locus Locus (T=Locus)
3D Locus Locus3D (T=Locus3D)
Free Hand Line FHand (T=FHand)
Dimension Dimension (T=Dimension)
Symbol Symbol (T=Symboal)
Sweep Sweep (T=Sweep)
Mult. Extrude MXtrd (T=MXtrd)
Worksheet SprdSheet (T=SprdSheet)
Group Group (T=Group)
Mesh Mesh (T=Mesh)
Extrude Xtrd (T=Xtrd)
Roof / Floor Slab (T=Slab)
Wall Wall (T=wall)
Layer Link LayerLink (T=LayerLink)
Poly3D Poly3D (T=Poly3D)
PICT Pict (T=Pict)
Bitmap Bitmap (T=Bitmap)
Light Light (T=Light)

OL-VS61

Vector Script Language Guide

Search Criteria

VectorScript Language Guide

Attribute Field Attribute Field I dentifier ~ Example

Symbol Name String of 20 or less (S=Window)
characters

Selected Status (Sel =True)

Selected Status (Sel = False)

OL-VS-62

Vector Script Language Guide

	Basic Concepts
	Identifiers
	Statements
	Expressions
	Operators
	Data Types
	Numbers and Strings
	String Data

	Variables
	Syntax

	Constants
	Syntax

	Reserved Words and Special Symbols
	Delimiters
	Comments
	Labels
	Syntax

	Assignment Statements
	Syntax

	Compound Statements
	Predefined Procedure Statements
	Expressions
	Arithmetic Expressions
	Relational Expressions
	Logical Expressions
	AND Operator
	OR Operator
	NOT Operator
	Short Circuit Operators
	Operator Precedence

	Repetition Statements
	FOR-TO /FOR-DOWNTO Statements
	Syntax
	Syntax
	REPEAT-UNTIL Statement
	Syntax
	WHILE-DO Statement
	Syntax
	Infinite Loops

	Conditional Statements
	IF-THEN-ELSE Statement
	Syntax
	Syntax
	Syntax

	Case Statement
	Control Statements
	Syntax

	Procedures and Functions
	Procedures
	Syntax
	Functions
	Defining Subroutine Procedures and Functions

	Program Scope
	Recursion
	Arrays
	Vectors
	Search Criteria
	Syntax
	Narrowing the Search
	Multiple Search Criteria
	Records and Fields
	Operators in Attribute Specifiers
	Other Search Criteria
	Search Criteria Parameters

