
1 VS

1

O
1VectorScript Language Guide
In this Guide

• Basic Concepts

• Constants

• Reserved Words

• Special Symbols

• Delimeters

• Comments

• Labels

• Statements

• Expressions

• Values
This Language Guide is intended to explain the intricacies of the VectorScript
Language. It provides basic concepts needed to understand the language as well as
explanations of the individual language components. VectorScript is based on the
Pascal programming language in that it has similar constructs; however it should not
be confused with Pascal which is a full featured high-level programming language.
VectorScript is a scripting language which requires no compiling.

The process of creating and editing scripts using the VectorScript Editor is contained
in your User’s Manual, Chapter 19. Ready-to-use Functions and Procedures are
accessed from the VectorScript Editor. These functions and procedures are defined
in your on-line help for easy reference while creating scripts. The information
contained within this manual can be used when creating your own scripts which
entail a detailed understanding of VectorScript’s language constructs.

BASIC CONCEPTS

VectorScript provides a comprehensive set of predefined functions which provide
access to the objects in a VectorWorks document. These can be supplemented with
any user defined functions contained in a script. The VectorScript language contains
identifiers, statements, expressions and operators.

The most basic script of most programming languages is the script that produces the
Hello World string of text. The following example presents the HelloWorld script in
the VectorScript language.

PROCEDURE HelloWorld;

BEGIN

Message(’Hello, World!’);

END;

Run(HelloWorld);
VectorScript Language Guide OL-VS-1

Basic Concepts

VectorScript Language Guide
Notice that in this example there is a user-defined procedure (HelloWorld), a pre-defined procedure
call (Message). This script shows a similarity between VectorScript and the Pascal language. One
difference between VectorScript and Pascal is the need for the Run() call at the end of the script to
indicate where execution should begin.

The following sections describe the basic concepts behind the VectorScript language and the handling
of data types, numbers, and strings.

Identifiers

An Identifier:

• variable, constant, function, and procedure names are identifiers
• stored to 20 characters
• case insensitive
• cannot be a reserved word
• can’t redefine a predefined or standard identifier (VectorScript differs from Pascal here)

You can use standard identifiers which make up the standard pascal library calls and are part of the
VectroScript language. These include: write, writeln, sin, cos, chr, and ord among others. Predefined
identifiers include the 650 plus VectorScript functions and procedures which manipulate VectorWorks
and its objects. Standard and predefined identifier types behave the same. User defined identifiers
include any function, procedure and variable created by a user. The names must follow identifier
naming conventions and can not conflict with existing identifiers.

Spaces

• spaces can not be inserted into the middle of identifier names, reserved words or multi
character operators (>=)

• spaces must be inserted to clarify adjacent identifiers and reserved words
for index := first to last do

• Inside single quotes, a space character is literal
• Otherwise, spaces are ignored
• Spaces can and should be used to make the script more readable such as indenting

compound statements.

Statements

Statements are the individual elements of a script which perform an action.These consist of:
OL-VS-2 VectorScript Language Guide

Basic Concepts VS
VectorScript Language Guide
• uses of built-in VectorScript statements such as IF, CASE, WHILE, FOR, REPEAT, and GOTO.
• calls to predefined or user defined procedures
• assignments (using := operator)

Simple statements can be combined into a compound statement by including them within a
Begin...End block. Compound statements can be used anywhere a statement can be used.

Expressions

An expression describes an algebraic or logical computation which results in a value. Expressions
combine constants literals, variables, function results, and the temporary results of sub-expressions
according to the rules of algebra and logic. Expressions can be used anywhere a value is accepted.

Operators

Operators provide the built-in algebraic and logic capabilities used in VectorScript in evaluating
expressions. Expressions are evaluated observing the precedence of the operators.

Data Types

In VectorScript, as with other programming languages, the information which you use and process,
also known as the data, can be categorized according to types. These types are important for a number
of reasons. Different types of data require different amounts of storage space in memory; VectorScript
uses these types to make sure there is enough memory reserved for your script to run properly. Data
types are also used to check for logic errors in your scripts; for instance, multiplying a word by a
number would result in a syntax error.

In VectorScript the following types of data are allowed:

Data Type Explanation

BOOLEAN Boolean data values may have one of two values: TRUE or FALSE. Boolean data values are
used to make decisions within VectorScript scripts

CHAR A char data value holds a single character, such as a letter, punctuation mark, etc.

HANDLE A handle data value is a specialized object identifier within VectorScript, sort of a “serial
number” for the object. Each object within a VectorWorks document can be accessed and its
object data (attributes, measurements) can then be retrieved or modified.

Handles to objects may change as the drawing is manipulated. They cannot be saved
between separate executions of a script.
VectorScript Language Guide OL-VS-3

Basic Concepts

VectorScript Language Guide
Numbers and Strings

The two types of data you will be most commonly handling in VectorScript will be numeric data (or
numbers), and character data (strings). Whether they are handled literally (using the actual value) or
through variables, knowing the format of this data is essential to programming in VectorScript.

Numeric data in VectorScript may be formatted using either decimal or fractional conventions.
Exponential notation is also supported, using the ‘E’ method of specifying the exponent value.

Example - Supported numeric formatting

0.256724 1/165E7 52.74E-3-256

Entering Coordinate data

VectorScript supports several methods for entering 2D coordinate data. These methods allow the user
to choose the method of inputting data that best fits their needs.

Absolute/Relative point methods:

STRING String data values are sequences of characters, such as words or sentences. String data
values may take from 0 to 255 characters per STRING value.

Structure Types

ARRAY An array data value stores a group of other values of the same type, which can then be
accessed through the name of the array and a location within the array.

VECTOR Vector data values store x, y, and z data for performing mathematical vector operations
within VectorScript.

Primitive Types

INTEGER Integer data values are the positive and negative counting numbers(ex., -3,0,4,23). Integer
values may range from -32,768 to 32,767 (-2E15 to 2E15-1). No fractions or decimals are
allowed in integer data.

LONGINT Long integer data values are for storing larger whole numbers whose range will exceed that
of integer values. LONGINT values may range from -2,147,483,648 to 2,147,483,647 (-
2E31 to 2E31-1). No fractions or decimals are allowed in LONGINT data.

REAL The REAL type is a 64 bit (IEEE double precision floating point number capable of
representing approximately 1.79E 308 with about 15 digits of precision.

Data Type Explanation
OL-VS-4 VectorScript Language Guide

Basic Concepts VS
VectorScript Language Guide
The default mode of VectorScript is absolute mode. In this mode, values entered as parameters for
procedures are assumed to be actual coordinate values relating to VectorWorks’ coordinate system. For
example, if the user specifies:

Example - Absolute Method

Absolute;

Rect(0,1/2,1/2,1);

Rect(1/2,1/2,1,0);

the values are assumed to be absolute X-Y coordinate pairs.

In relative point mode, values are treated as X and Y offsets from the current position of the graphics
pen. When any object is drawn in VectorWorks, a virtual “pen” is used to draw from point to point.
When the operation completes, the pen will remain at that position until another draw routine is called.

The relative method can be used effectively to draw objects whose location would make entry of
coordinate data cumbersome, or if the user knows the dimensions of an object and wishes to be able to
easily draw it at any location.

Example - Relative Method

MoveTo(1/16, 5/32);

Relative;

{ NOTE:when in relative mode,}

{ the poly’s first point is implicit}

Poly(1,0, 1,1, -2,0, 0,-1);
VectorScript Language Guide OL-VS-5

Basic Concepts

VectorScript Language Guide
The example above shows how the relative method can be used to draw an object. By using the relative
method, the object was drawn by specifying the offset locations of all the vertex points, essentially
telling the graphics pen the path to follow to draw the polygon. It would have been cumbersome to
specify all of the coordinates in Absolute mode.

At the beginning of execution, a script is always in absolute coordinate mode. Procedures Absolute and
Relative are used to switch VectorScript between these modes. Users should be careful to set the mode
appropriately to ensure proper execution.

Distance-Angle Method:

VectorScript supports one additional coordinate entry format, the distance-angle format. Distance
angle format specifies coordinate locations in terms of a distance and direction angle, similar to polar
coordinates found in mathematics. When specifying distance and angle, the general format is to
specify the distance in place of the X coordinate, and the angle in place of the Y coordinate. The pound
symbols are used to denote that an angle value follows, not a coordinate value. When using Distance-
angle coordinates, the point is always specified as a relative offset from the current pen location.

Example - Distance-Angle Method

MoveTo(-1, 0);

Poly(0.25,#0, 0.5,#80,

1,#-80, 1,#80, 1,#-80, 1,#80, 1,#-80, 1,#80, 1,#-80,

0.5,#80, 0.25,#0);
OL-VS-6 VectorScript Language Guide

Basic Concepts VS
VectorScript Language Guide
VectorScript also supports various methods for entering angular information, described in the
following table.

Angle Formats Example

Integer degrees RECT(2,#90,2,#0)

Decimal degrees RECT (2,#89.5,2,#359.5)

Degree symbol RECT (2,#90°,2,#0°)

Degrees, Minutes, Seconds RECT(2,#90d30’0",2,#0d30’0")

Grads RECT (2,#100g, 2,#0g)

Radians RECT (2,#1.57r,2,#0r)

RECT (2,#1/2 _,2,#0_)

Surveyor’s units RECT (2,#N 45d30’0" E,4,#S45d30’0" E)

When using surveyor’s units, users should consult the section on Procedures AngleVar and
NoAngleVar in order to ensure that input data is interpreted correctly.

String Data

String data is usually found, when not in a variable, as a quoted string constant. This term describes a
character string enclosed in single quotes that is between 0 to 255 characters in length, and is
constructed from the ASCII character set. The following example shows a quoted string constant.

Example - Quoted string constant

'I am a quoted string constant'
VectorScript Language Guide OL-VS-7

Variables

VectorScript Language Guide
When specifying string constants in VectorScript, you should remember three important points:

• Each string must be enclosed in single quotes
• Spaces count as characters.
• The maximum number of characters in one string is 255 characters.

Another example of a string constant in use is the value 'Hello, World' in the HelloWorld script.

While it is important to know how to handle numeric and character data directly in VectorScript, most
of the time you will be handling your data through the use of variables. Variables provide the flexibility
that allows your scripts to adapt to your needs. To use them effectively, you will need to learn more
about how variables are used and specified.

VARIABLES

In VectorScript, as with most programming languages, the primary means of storing and transferring
data is through variables. Variables are identifiers associated with a reusable storage location for a data
value. This value can then be retrieved from the location for output or use in other ways.

VectorScript attempts to ensure that scripts assign appropriate data to variables. All VectorScript
variables must be declared with a type before they are used.

If necessary, VectorScript will convert (coerce) data from one type to another when it can do it
accurately and unambiguously. Otherwise, an attempt to store an incompatible type in a VectorScript
variable will result in an error.

The variable’s data type is defined at the beginning of the procedures, in the special areas known as the
variable declaration (VAR) section. All data types in VectorScript are supported as variables.

In VectorScript, variables for all supported data types are defined in the variable declaration section of
the VectorScript script. This section begins the use of the VAR reserved word, after which variables are
declared. It is terminated by the BEGIN reserved word, which defines the executable section of the
script.

Syntax

VAR

<variable ident 1>,<variable ident 2>,…,<variable ident n > :<data type>;

<variable ident 1>,<variable ident 2>,…,<variable ident n > :<data type>;
OL-VS-8 VectorScript Language Guide

Variables VS
VectorScript Language Guide
. . .

. . .

Declaration of variables is formatted as follows:

<the variable name> : <data type> ;

For example, to declare the variable myMessage, of type STRING, the following declaration statement
would be used:

myMessage : STRING;

Multiple variables of a specific type can be declared in a comma delimited list, as shown:

i, j, k, l, m : INTEGER;

In addition, multiple declarations of the same data type may be included. This is often useful in large
scripts for logically grouping related variables, as shown:

height,width,length:REAL;

objName:STRING;

price,unitprice : REAL;

Declaration of variables reserves sufficient memory for storage of all variable data during script
execution. Variables declared at the beginning of the main script routine (or program block) will persist
throughout execution of the script. In addition, variables can be declared local to script subroutines;
these variables will only persist as long as the subroutine is within scope, and will be destroyed when
the subroutine is exited.

Variables may be named according to the preferences of the programmer, though they are subject to the
following rules:

• Variable names may be of any length, but it is the first 20 characters that are used by
VectorScript to identify the variable.

• Variable names are not case sensitive; upper and lowercase letters are equivalent.
• Variable names must be comprised of letters, digits, and underscores; in particular, spaces are

not allowed.
• Variable names must begin with a letter.

The following are examples of valid variable names:

fubar1 line_wt TheBestLayerEver A_BigNumber
VectorScript Language Guide OL-VS-9

Constants

VectorScript Language Guide
The following examples are NOT valid:

2546a 32array -ABC- BEGIN

BEGIN is a reserved word, which cannot be used as a variable, since it would create a conflict, and an
error would be generated.

Variable values are always undefined at the start of the program block in which they are declared. It is
up to you to properly initialize variables prior to use.

CONSTANTS

Constants are values in a VectorScript script routine which can not change throughout the entire
duration of execution. These values differ from variables in that they cannot be modified by the script.
Constants are defined in a special section of the script (known as the constant definition section),
preceded by the reserved word constant declaration format CONST. Each constant is represented by an
identifier, and each constant definition is separated by a semicolon.

Syntax

CONST

<constant identifier 1>=<value>;

<constant identifier 2>=<value>;

. . .

<constant identifier n>=<value>;

The general format is as follows :

Procedure Foo;

CONST

constant identifier = constant value;

constant identifier = constant value;

..

etc.

VAR

etc.
OL-VS-10 VectorScript Language Guide

Reserved Words and Special VS
VectorScript Language Guide
Constants can be used whenever a value is needed throughout a script (they follow variable scope
rules). For example, if you are performing calculations which require a value to be used throughout
your code as a multiplier (the value PI, for example), this multiplier could be defined as a constant.

There is also a predefined constant for use in VectorScript: NIL. This value is returned when a
VectorScript procedure is unable to return a value, such as a handle to an object. NIL can also be used
to initialize variables prior to use.

This constant can be used as a comparison value when evaluating the result of a relational expression.
For example, when processing through objects by handle, if no objects are left in the traversal list, NIL
will be returned.

RESERVED WORDS AND SPECIAL SYMBOLS

As with any language, programming or otherwise, there is a basic vocabulary from which you can
construct something meaningful. In VectorScript, reserved words and special symbols make up this
vocabulary, allowing the programmer to construct a script which is meaningful to the VectorScript
interpreter.

Reserved words constitute important markers to VectorScript. Without them, there would be no way
for VectorScript to derive a meaningful set of instructions from your code. These words provide a
framework which allows the VectorScript interpreter to read and understand your code.

The meanings of reserved words and special symbols cannot be changed.

The following is a list of reserved words in VectorScript:

AND FOR REPEAT

ARRAY FUNCTION THEN

BEGIN GOTO TO

CASE IF UNTIL

CONST LABEL VAR

DIV MOD WHILE

DO NOT

DOWNTO OF

ELSE OTHERWISE

END PROCEDURE
VectorScript Language Guide OL-VS-11

Delimiters

VectorScript Language Guide
Special symbols provide a similar function, telling the VectorScript interpreter how to act on numeric
data and variables found in your code. The following is a list of special symbols in VectorScript.

+ - * / = < >

. ‘ , () : ;

{ } | & # ^ $

• @ []

The following pairs of characters are also considered special symbols.

<> <= >= := .. **

The uses of specific reserved words and special symbols will be explained in greater depth later in this
manual.

DELIMITERS

Delimiters act as separators between the discrete objects (variables, statements, operators) in your
source code so that the VectorScript interpreter can distinguish them as individual items. Spaces, tabs,
and carriage returns are the principal delimiters found in VectorScript.

In addition, special symbols act as delimiters along with their other functions. Thus, the VectorScript
interpreter can understand the expression

number_of_planets:=7+two;

because the := and + act as delimiters between the other components of the expression.

COMMENTS

Comments are essentially informational remarks which can be included in the VectorScript source
code to describe and clarify the way the VectorScript script works. They are important as a way of
providing a quick means of reorienting yourself with the code should you need to work with it in the
future, and are of great importance in allowing others to understand your code. It is highly
recommended that you always place comments in your code.
OL-VS-12 VectorScript Language Guide

Labels VS
VectorScript Language Guide
Comments are placed in the VectorScript code between opening and closing braces, as shown in the
example.

Example - Comment

{I have no idea what this code does- I didn’t comment it}

Comments are ignored by the interpreter when executing a VectorScript script.

LABELS

Labels are a specialized identifier that is used with GOTO statements. GOTOs allow the programmer
to jump to any point in the program, and the label is used to mark the target point of the GOTO
statement. Labels are defined in their own special section in the code, in a manner similar to that of
constants.

Syntax

LABEL

<label identifier 1>,

<label identifier 2>,

. . .

<label identifer n>;

The label declaration section is formatted as follows:

Procedure Foo;

LABEL

label identifier 1,label identifier 2,...,label identifier n;

VAR

etc.

where the label identifier is a number between 1 and 9999.

When using labels in VectorScript scripts, the label is always located preceding a VectorScript
statement, with the label identifier being followed by a colon. The label is then referenced by the
GOTO statement, and during execution, the program flow of the script will jump to the label location
when the GOTO is encountered. For more information on GOTO statements, see “Control Statements”
on page 1-39.
VectorScript Language Guide OL-VS-13

Assignment Statements

VectorScript Language Guide
Example - Label

Procedure JmpTolabel;

LABEL

1,2;

VAR

IntegerVal : INTEGER;

BEGIN

IntegerVal:=5;

IF IntegerVal = 5 THEN

GOTO 1;

Message('Integer was not equal to 5');

GOTO 2;

1: Message('Integer equals 5');

2: END;

Run(JmpTolabel);

ASSIGNMENT STATEMENTS

Assignment statements perform a basic operation of VectorScript; they assign a value to a variable. In
the examples earlier in the manual, you have already seen numerous instances of the assignment
statement being used. Assignment statements are the primary method of assigning and moving values
in VectorScript.

Syntax

<variable identifier>:=<the value to be assigned>;

The value being assigned can be represented by an explicit value (52, ‘VectorWorks’, TRUE), another
variable, the result or return value of a function or an arithmetic expression, or the returned value from
a procedure statement. The special symbol “:=”, also known as the assignment operator, is used to
indicate to the interpreter that the value to be assigned is to be stored in the specified variable.

Assignment statements follow a set of rules governing which data types can be assigned to which type
of variable.

• Coercion between numeric types is automatic REAL, INTEGER, and LONGINT can be
assigned to each other without restriction. Overflows produce undefined results.
OL-VS-14 VectorScript Language Guide

Assignment Statements VS
VectorScript Language Guide
• Coercion between string types is automatic. CHAR and STRING variables can be assigned to
each other.

The next examples show how assignment statements can be used in a VectorScript script.

Example - The assignment statement

Procedure AssignVals;

VAR

RealValue1,RealValue2,Result:REAL;

BEGIN

RealValue1:=6;

RealValue2:=2;

Result:=0;

Result:=RealValue1*RealValue2;

Message(Result);

END;

Run(AssignVals);

This example shows how values can be assigned explicitly and by other means. In the example,
RealValue1 and RealValue2 are assigned explicit number values. Result is also assigned a value,
illustrating a bit of good programming practice, initializing your variables. Also shown is an
assignment statement where a value is assigned that is the result of an arithmetic expression. The
various methods of assignment allow you a wide range of ways to move and manipulate your data.

STRING and BOOLEAN values can also be used with assignment statements. The next example
shows how a STRING value is manipulated with the assignment statement.

Example - The assignment statement

Procedure AssignVals2;

VAR

StringValue1,StringValue2:STRING;

CharVal1:CHAR;

BEGIN

StringValue1:='This is ';

CharVal:=’a’;

StringValue2:=’ nice string’;

StringValue1:=Concat(StringValue1,CharVal,StringValue2);

Message(StringValue1);

END;
VectorScript Language Guide OL-VS-15

Compound Statements

VectorScript Language Guide
Run(AssignVals2);

Using assignment statements with STRING values, is very similar to using them with numeric values.
In the first three lines of the actual procedure, each variable is being assigned an explicit value, in this
case two literal strings and a character value. The next line in the procedure illustrates how the
assignment statement can be used to assign a value, returned from a VectorScript standard function, to
a variable. In this case, the result from Concat, which takes different strings and combines them into
one, is assigned to StringValue1.

You might have also noticed that StringValue1 is used by Concat as a parameter. This shows not only
how variables can be reused, but also a key concept in how VectorScript executes. In VectorScript, the
assignment of the value to the variable will always occur AFTER any calculations, comparisons, or
calls to standard procedures. This method of working with variables can be used to your advantage in
your VectorScript scripts.

COMPOUND STATEMENTS

In VectorScript, you will often need to treat several other statements as a group (for instance, when
executing several statements as part of a loop). To do this, you will need to use a compound statement.

The general format of a compound statement is:

BEGIN

<statement>;

<statement>;

...

...

<statement>;

END;

If you noticed that the main part of a VectorScript script is a compound statement, you are correct. The
body of every VectorScript script and subroutine consists of a single compound statement.

Compound statements can be nested as many times as you like; however, every BEGIN must have a
matching END keyword. A mismatch of the BEGIN-END pair will cause the VectorScript interpreter
to generate an error, and your script will not run.
OL-VS-16 VectorScript Language Guide

Predefined Procedure State- VS
VectorScript Language Guide
PREDEFINED PROCEDURE STATEMENTS

Procedure statements are probably the most common statement type used in VectorScript. Procedure
statements call a predefined VectorScript routine to perform an action in the document. You have
already seen several instances of procedure statements in previous examples. Provided procedure and
functions are described in the on-line HTML reference available through the help system.

EXPRESSIONS

An expression describes an algebraic or logical computation which results in a value. Expressions
combine constants, literals, variables, function results, and the temporary results of sub-expressions
according to the rules of the algebra and logic.

Operators and Operands

All expressions consist of two parts: operators and operands.

Operators are special symbols or reserved words which tell the interpreter what actions to perform.
They are usually categorized as either arithmetic operators (which indicate a mathematical operation to
be performed), relational operators (which compare 2 operands), or logical operators (which evaluate
the “state” existing between two operands).

Operands are the data values which are used as input for the expression. This data can be in the form of
a literal value (as shown above), but it can also be a variable, a constant, a function which returns a
value, or another expression.
VectorScript Language Guide OL-VS-17

Expressions

VectorScript Language Guide
Example - Operators and Operands

TheResult:=(3*AValue)+Sin(AnotherValue*PI);

Operators

Operands

The example shows all four described ways of providing operand data. The VectorScript interpreter
processes this expression by first performing the operation within the first parentheses, which is itself
an arithmetic expression. Next, the sine operation is performed by calling the Sin procedure statement,
using the product of a constant PI and the value contained within the variable as the operand. The
results of these operations are then used as the operands for the addition operation. The result of the
expression is then assigned to the variable TheResult.

Arithmetic Expressions

Arithmetic expressions are exactly what the name implies— expressions which execute a
mathematical operation in VectorScript. These expressions usually consist of numeric values as
operands, either literally or in variables, combined with operators which indicate the mathematical
operation to be performed. These operations can be performed singly, or can be combined or chained
to form larger expressions.

Arithmetic expressions in VectorScript support all the four standard mathematical operations, along
with exponentiation and modulo (remainder) division. VectorScript also contains a library of
predefined mathematical procedures to provide support for trigonometric, logarithmic, and other
operations.

Example - Arithmetic Expressions

myValue := 3 * 2;cost := (basePrice * 1.5) + tax;

slope := rise / run;cotng := 1 / Tan(angleValue);

When working with arithmetic expressions, it is important to consider what numeric types you are
using. The difference in numeric data types found in VectorScript can have serious implications in your
calculations, and you will have to consider these differences when writing your scripts. The example
OL-VS-18 VectorScript Language Guide

Expressions VS
VectorScript Language Guide
below provides some insight as to what problems may arise in arithmetic using the different numeric
types.

Example

IntVal:=6+4;{the result is 10.}

IntVal:=6-4;{the result is 2.}

IntVal:=6*4;{the result is 24.}

IntVal:=6/4;{the result is 2.}

In the example, you may have noticed that the last result seems incorrect. This is not a typo; were you
to divide these numbers and return the result to a variable of type INTEGER or LONGINT, you would
get this value.

This result indicates the difference between calculations involving REAL values and calculations with
INTEGER or LONGINT data. While addition, subtraction, and multiplication of INTEGER or
LONGINT data will always return a whole number, division will have cases where a fractional result
will be returned. Since INTEGER and LONGINT data definitions do not accommodate fractions, the
result will be data loss. To prevent this, VectorScript provides a workaround, always converting the
result of INTEGER or LONGINT division to a REAL value. If you were to substitute a variable of
type REAL, the entire result would be returned.

Example

RealVal:=6/4;{the result is 1.5.}

VectorScript assumes that you are aware of the possibility of losing data when performing INTEGER
or LONGINT division. It therefore does not generate an error if the result from your calculations is
assigned to a data type where rounding of the value occurs.

Suppose, however, that you want to divide two integers and retrieve both the whole and fractional parts
of the result, and also preserve the data type of the results. VectorScript provides two alternate
operators for division operations with INTEGER or LONGINT values: DIV and MOD.

DIV provides the same basic functionality as the “/” operator, returning the quotient (whole number) of
the division. In this case, though, the quotient result is the same data type as the operands.

MOD provides the opposite result of DIV, returning the remainder, or modulus, as the result. The
MOD result is also returned as a value of the same data type as the operands.

Example

9 DIV 4{The result is 2.}

9 MOD 4{The result is 1.}
VectorScript Language Guide OL-VS-19

Expressions

VectorScript Language Guide
The ** operator allows a real to be raised to real power

2.5**2.0 {The result is 6.25}

Precedence of operations on the same level is left to right. Multiple instances of exponentiation,
however, are performed from right to left. Parentheses can be used to force a higher precedence of
operations.

Relational Expressions

Expressions can also be used to compare values as quantities. These types of expressions, called
relational expressions, are used extensively in VectorScript in making decisions on how to control the
execution of the script.

Relational expressions are comprised of either numeric or string operands, combined with special
relational operators which define how the operands are to be compared. The result of a relational
expression is always a logical (TRUE or FALSE) value.

Example - Relational Expressions

j < 2 this >= that count = 5

total < (amount+tax) objectHandle <> NIL

Relational Operators

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to

<= Less than or equal to

< Less than

 are:

Relational expressions can be combined with an assignment operator to store the result in a variable,
but they are most often used with other statements to form a decision making structure in your script.

Example - Relational Expression

PROCEDURE Test;

VAR

userVal:REAL;
OL-VS-20 VectorScript Language Guide

Expressions VS
VectorScript Language Guide
FUNCTION GetValueInRange(userPrompt:STRING; defaultVal, minVal,
maxVal:REAL):REAL;

{

GetValueInRange demonstrates using relational expressions

to guarantee a user-entered value falls within a desired range.

}

VAR

theVal:REAL;

done:BOOLEAN;

prompt:STRING;

BEGIN

done := FALSE;

prompt := Concat(userPrompt, ’ [between ’,

Num2Str(3, minVal), ’ and ’,

Num2Str(3, maxVal), ’] :’);

REPEAT

theVal := RealDialog(prompt, Num2Str(3, defaultVal));

IF theVal < minVal THEN

Message(’You entered a value less than the minimum.’)

ELSE IF theVal > maxVal THEN

Message(’You entered a value greater than the maximum.’)

ELSE

done := TRUE;

UNTIL done;

GetValueInRange := theVal;

END;

BEGIN

userVal := GetValueInRange(’Enter first number’, 5, 0, 10);

Message(userVal);

userVal := GetValueInRange(’Enter second number’, 180, 0, 360);

Message(userVal);

END;
VectorScript Language Guide OL-VS-21

Expressions

VectorScript Language Guide
Run(Test);

When comparing relational expressions and STRING data using relational operators, the ordering of
the ASCII character set becomes important in determining how relational expressions will evaluate.
The following rules apply when evaluating STRING data:

• String values are compared a character at a time, from left to right.
• If the ASCII value of one character is greater than the other, the corresponding string is greater

than the other.
• If corresponding characters are equal, the comparison point advances to the next character.
• If the end of one string is reached, it’s value is less than the other string.
• If the end of both strings is reached, the strings are equal.

Relational expressions and their results can also be combined into larger expressions, which allow you
to make complex decisions and evaluate objects and documents based on multiple factors. These larger
expressions, called logical expressions, are the last expression type found in VectorScript.

Logical Expressions

Logical expressions may be thought of as an extension of relational expressions. Logical expressions
use relationals as their operands, and when combined with special logical operators, return a boolean
valued result.

Logical expressions are used to construct more complex decision and control statements than could be
accomplished by using simple relational expressions. As you become more proficient in using the
VectorScript language and write more complex scripts, you will often need to control execution based
on the results of several inputs.

Example - Logical Expressions

(i <=5) AND (j<>2)

(unitcost < 123.50) OR (quantity > 25)

(value > 12) AND NOT (value = 22)

There are five specialized logical operators, which handle the three logical operations available in
VectorScript: AND, OR, and NOT.
OL-VS-22 VectorScript Language Guide

Expressions VS
VectorScript Language Guide
AND, & And operator

OR, | Or operator

NOT Not operator

AND Operator

An expression using the AND operator will evaluate to TRUE if and only if both operands in the
expression are TRUE. All other conditions will evaluate to FALSE.

Operand 1 Operator Operand 2 Result

TRUE AND TRUE TRUE

TRUE AND FALSE FALSE

FALSE AND TRUE FALSE

FALSE AND FALSE FALSE

Example - AND Operator

BoolVal1:=TRUE

BoolVal2:=FALSE

BoolResult:=BoolVal1 AND BoolVal2;

evaluates to FALSE.

OR Operator

An expression using the OR operator will evaluate to TRUE if either operand in the expression is
TRUE. Both operands must be FALSE for the expression to evaluate to FALSE.

Operand 1 Operator Operand 2 Result

TRUE OR TRUE TRUE

TRUE OR FALSE TRUE

FALSE OR TRUE TRUE

FALSE OR FALSE FALSE
VectorScript Language Guide OL-VS-23

Expressions

VectorScript Language Guide
Example

BoolVal1:=TRUE

BoolVal2:=FALSE

BoolResult:=BoolVal1 OR BoolVal2;

evaluates to TRUE.

NOT Operator

The result of the NOT will be the opposite of it’s single operand.

Operator Operand Result

NOT TRUE FALSE

NOT FALSE TRUE

Example - NOT Operator

BoolVal1:=TRUE;

BoolResult:=NOT BoolVal1

evaluates to FALSE.

Short Circuit Operators

The two alternate operators for AND and OR operations, & and |, are also known as “short circuit”
operators.

In logical expressions, since both the operands are also expressions, they must first be evaluated so that
the return result may be used as input for the larger expression. When using AND and OR, both
operands are always evaluated and the result of the logical expression is found.

With short circuit operators however, the first operand is evaluated and checked by the interpreter. If a
definite result of the entire expression is determined, the second operand is not evaluated; instead, the
expression immediately returns a result.

The time saved by using this “short-circuit” operation may seem trivial, but in complex scripts or loops
which perform numerous calls to the logical expression, using these operators can result in scripts
which run much faster.
OL-VS-24 VectorScript Language Guide

Expressions VS
VectorScript Language Guide
Example - Short Circuit Operator

foo:= 3;

bar:=5;

WHILE ((foo > 4) & (bar < 6)) DO BEGIN

SysBeep;

END;

In the example, the logical expression will return false and prevent the loop from executing. The first
operand, foo < 4, returns FALSE(since foo is equal to 3). Once this operand has been evaluated as
FALSE, the entire expression returns FALSE, since both expressions must return TRUE for an AND to
return TRUE. In this instance, the expression bar < 6 never gets evaluated, saving some time in
execution.

Short circuit operators also allow notational efficiency when calling fucntions which require their
parameters to be validated. If you need to call a function which can not accept a NIL handler do the
following:

IF(handleValue <>NIL &

ProcessHandle(HANDLEValue))THEN

Operator Precedence

In VectorScript, operators and operands can be chained together to form complex expressions. The
order in which these operations are performed can have a significant impact on the result. This is where
operator precedencematters. All operators in VectorScript are assigned a level of importance, or
precedence. When a complex expression is encountered, this precedence is evaluated to determine
which operation should be performed first, second, and so on. In this way, uniform results are derived
according to the established rules of precedence. The table below lists operator precedence in
VectorScript.

Operators Precedence

(), **, ^, NOT highest

*, /, DIV, MOD, AND, & second

+, -, |, OR third

=, <>, <, >, <=, >= lowest
VectorScript Language Guide OL-VS-25

Repetition Statements

VectorScript Language Guide
REPETITION STATEMENTS

In VectorScript, your script statements are executed in a linear fashion, one after another until the
entire script has been processed. This type of execution does not lend itself to repeated execution of
script statements to process multiple objects or to perform a progressive operation on the document. To
accomplish this type of repeated execution, you need loop statements.

Program loops provide a means of executing a section of your script repeatedly, but still under your
control. Entry into the program loop is controlled by the entry condition, which determines whether the
necessary prerequisites exist to execute the loop. Once past the entry condition, the statements which
you have defined as part of the loop will begin to execute. This process will repeat itself indefinitely.
To stop this execution, you must check for a specific condition to indicate that the loop should
terminate. This condition, known as the exit condition, can be determined by whether there are any
objects left to process, whether a specific document state exists, or even by a simple numeric count.

As an example, suppose you wanted to create a script which changes the pen foreground color of all
the selected objects in your document. Your script would need to contain a program loop which would
process each object individually, setting it’s pen foreground color.

In your script’s program loop, the entry condition of your loop would determine if any objects are
selected.

The exit condition of your loop would determine if there were any objects left to process; once all the
selected objects are processed, then the loop is exited, and your script can finish.

Note: To stop VectorScript during execution, depress and hold, Command-period (Macintosh) or the
Esc (Windows). In most cases, this will terminate the VectorScript script.

The following example illustrates a typical loop.

Example - Program Loops

PROCEDURE SetSelObjectColor;

CONST

kNewColor = 45;

VAR h:HANDLE;

BEGIN

h := FSActLayer;

WHILE h <> NIL DO BEGIN

SetPenFore(h, kNewColor);

h := NextSObj(h);
OL-VS-26 VectorScript Language Guide

Repetition Statements VS
VectorScript Language Guide
END;

END;

Run(SetSelObjectColor);

In the example, the expression (h <> NIL) acts as a gatekeeper for the larger WHILE-DO repetition
statement. The result of the relational expression directly controls the continuing execution of the loop.

In VectorScript, when you step through a list of objects, NIL is returned when the end of the list is
reached. Until the end is reached, there is a value other than NIL in objectHandle, and TRUE is
returned by the expression to the repetition statement. When NIL is returned (the end of the list is
reached), FALSE is returned, and the loop terminates.

There are three types of repetition statements in VectorScript: FOR-TO/FOR-DOWNTO statements,
REPEAT-UNTIL statements, and WHILE-DO statements

FOR-TO /FOR-DOWNTO Statements

Both types of FOR structures adhere to several rules which govern the layout and function of the
structure:

• The counter variable must be a variable of type INTEGER and must be declared within the
procedure where it is used.

• Do not try to change the value of the counter variable from within the FOR statement; this can
produce unpredictable results.

• If limit expressions are used, the counter variable should not be included in the expressions.
• The TO and DOWNTO conditions are inclusive; that is, equal values will evaluate to a TRUE

condition.

For-To

The FOR structure uses a “counter” or “limit” variable to determine the number of times the specified
statement or statements will be executed.

Syntax

FOR-TO structure

FOR <variable identifier> = initial value TO upper limit value DO

statement;
VectorScript Language Guide OL-VS-27

Repetition Statements

VectorScript Language Guide
FOR <variable identifier> = initial value TO upper limit value DO

BEGIN

statement;

statement;

. . .

. . .

statement;

END;

Example - FOR Loop

Procedure Loop01;

VAR

Count: INTEGER;

BEGIN

FOR Count:=1 TO 10 DO

Message(Count);

END;

Run(Loop01);

With a FOR loop structure, the counter variable is initialized when the loop is entered. The statement
or statements in the loop structure are then executed, and execution returns to the beginning of the
loop. In the example, the message bar is displayed with the value of the counter variable. The counter
variable is then incremented, the limit expression is evaluated (is Count less than or equal to 10) and
the whole process begins again. When the limit of the loop (10 in the example) is exceeded, the loop is
exited and execution continues with the next statement following the repetition statement.

FOR statemens and compound statements in a FOR structure must have a BEGIN and END statement
to define their bounds. More complex expressions may also be used to define the limits of execution
for the FOR loop. These limit expressions may be of any type previously outlined.

FOR-DOWNTO

There may be times when you may want the count to decrement, or count down, rather than count up.
The FOR structure accommodates this possibility by allowing you to replace the TO reserved word
with DOWNTO.
OL-VS-28 VectorScript Language Guide

Repetition Statements VS
VectorScript Language Guide
Syntax

FOR-DOWNTO structure:

FOR <variable identifier> = initial value DOWNTO lower limit value DO

statement;

FOR <variable identifier> = initial value DOWNTO lower limit value DO

BEGIN

statement;

statement;

. . .

. . .

statement;

END;

Example - FOR-DOWNTO loop

Procedure Loop02;

VAR

Count: INTEGER;

BEGIN

FOR Count:=10 DOWNTO 1 DO

Message(Count);

END;

Run(Loop02);

Other than reversing the direction of the count, the FOR-DOWNTO structure functions in the same
way as a FOR structure. The following is a more complex example of a For Loop:

Example - Complex For loop

PROCEDURE RRExample;

{

RRExample is an example of using a FOR loop

to construct a segment of railroad track with

a very repetitive geometry.

}

CONST

kTieInterval = 0.3;

VAR i:INTEGER;

totalTies: INTEGER;
VectorScript Language Guide OL-VS-29

Repetition Statements

VectorScript Language Guide
PROCEDURE DrawRRTie(which: INTEGER);

CONST

kHalfWidth = 0.1 / 2;

kHalfLength = 0.8 / 2;

VAR tie:REAL;

BEGIN

tie := which * 0.3;

Rect(tie-kHalfWidth, -kHalfLength, tie+kHalfWidth, kHalfLength);

END;

PROCEDURE DrawRails(howManyTies: INTEGER);

VAR halfRailLength:REAL;

BEGIN

halfRailLength := (howManyTies * kTieInterval) / 2.0;

Rect(-halfRailLength, 0.3, halfRailLength, 0.25);

Rect(-halfRailLength, -0.3, halfRailLength, -0.25);

END;

BEGIN

totalTies := 7;

FOR i := -totalTies DIV 2 TO totalTies DIV 2 DO

DrawRRTie(i);

DrawRails(totalTies);

END;
OL-VS-30 VectorScript Language Guide

Repetition Statements VS
VectorScript Language Guide
REPEAT-UNTIL Statement

The REPEAT structure will execute the included statements until the limit expression (exit condition)
returns a value of TRUE.

REPEAT and REPEAT-UNTIL statements do not require BEGIN or END keywords even when
executing multiple statements. This is because the REPEAT and UNTIL keywords indicate the
statement boundaries to the VectorScript interpreter.

Syntax

REPEAT

statement;

statement;

. . .

. . .

statement;

UNTIL boolean expression;

Example - REPEAT-UNTIL

Procedure RU01;

VAR

Count,NewVal:INTEGER;

BEGIN

Count:=0;

REPEAT

NewVal:=Count*2;

Message(NewVal);

Count:=Count+1;

UNTIL(Count>10);

END;

Run(RU01);

In the example, the statements between REPEAT and UNTIL will be executed until the exit condition
is encountered. The limit expression is not evaluated until after all the statements contained within are
executed, so that even if the limit condition is initially FALSE, all the statements contained with in the
REPEAT-UNTIL structure will execute at least once. Also, unlike the FOR-TO statement, you are
responsible for both initializing and incrementing your limit (counter) variables. More complex limit
expressions may also be used with the REPEAT statement for greater control over it’s execution.
VectorScript Language Guide OL-VS-31

Repetition Statements

VectorScript Language Guide
The following is a more complex loop:;

PROCEDURE Accelerate;

{

Accelerate is an example of using a REPEAT loop

to simulate the effect of gravity on a falling body.

}

CONST

g = 386.088;{in/sec^2}

kTimeInterval = 0.015;{Seconds}

VAR yPos, t:REAL;

PROCEDURE DrawBall(p, t:REAL);

CONST kRadius = 0.125;

VAR ballLabel:STRING;

BEGIN

Oval(-kRadius, p-kRadius, kRadius, p+kRadius);

TextJust(1); {left justify}

TextSize(6);

TextOrigin(2*kRadius, p);

ballLabel := Concat(’d: ’, Num2Str(3, p),

’ in. at ’, Num2Str(3, t), ’ sec.’);

BeginText;ballLabel

EndText;

END;

FUNCTION GetBallPosition(t:REAL):REAL;

BEGIN

GetBallPosition := -t*t*g/2.0;

END;

BEGIN

t := 0.0;

yPos := 0.0;

REPEAT

DrawBall(yPos, t);

t := t + kTimeInterval;

yPos := GetBallPosition(t);

UNTIL yPos < -4.5;

END;
OL-VS-32 VectorScript Language Guide

Repetition Statements VS
VectorScript Language Guide
WHILE-DO Statement

WHILE-DO statements contain elements of functionality from both the FOR-TO and REPEAT-
UNTIL statements. In the WHILE-DO statement, like the FOR-TO, the limit expression is evaluated
prior to entering the loop part of the structure. If the WHILE limit does not evaluate to TRUE initially,
no statements will execute; the limit expression functions as both the entry and exit conditions for the
statement. However, unlike FOR-TO, and similar to the WHILE and REPEAT statement, you are
responsible for initializing and incrementing your limit variables.

Syntax

WHILE boolean expression DO

statement;

WHILE boolean expression DO

BEGIN

statement;

statement;

. . .

. . .

statement;

END;

Example - WHILE-DO Structure

Procedure T1;

VAR

Count:INTEGER;

BEGIN

Count:=0;

WHILE Count < 10 DO BEGIN

Message(Count);

Count:=Count+1;

Wait(1);

END;

Message(‘All done.’);

END;

Run(T1);
VectorScript Language Guide OL-VS-33

Conditional Statements

VectorScript Language Guide
In the example the value of Count is initialized, so that when the conditional for the WHILE-DO loop
is encountered, it is TRUE. The loop is entered, and processes until Count >= 10. The loop then exits
and execution continues.

Infinite Loops

An important item to consider when using REPEAT or WHILE statements is the careful choice of limit
expressions. In the example above, if the greater than (>) sign were accidentally entered as a less than
sign (<), the loop would not execute at all. In other cases, a subtle mistake such as this can cause an
infinite loop, which never reaches an exit condition. This will often result in an application crash. Even
if you do not experience problems this severe, incorrectly choosing your limit expressions can result in
your loop failing to complete it’s task properly. If your scripts are returning bad results, or worse,
causing application crashes, you should always double check the limit expressions in your repetition
statements.

Note: To stop VectorScript during execution, depress and hold, Command-period (Macintosh) or the
Esc (Windows). In most cases, this will terminate the VectorScript script.

CONDITIONAL STATEMENTS

Conditional statements are used to control the “program flow” of the VectorScript script. They are used
to make decisions as to what other statements need to be acted upon, and do so by evaluating a
particular condition. Relational or logical expression statements provide the actual decision making
ability for the conditional statement, which then controls the path of further execution. In VectorScript
there is one type of conditional statement, the IF-THEN-ELSE statement.

IF-THEN-ELSE Statement

The IF-THEN-ELSE statement uses relational and/or logical expressions to determine the TRUE-
FALSE validity of a condition related to the document, an object, or the script. Based on the result, the
execution of the script can take one of two paths. If the expression or value is evaluated to TRUE, the
statement or statements which follow the THEN branch are executed. If FALSE is returned as a result,
the ELSE branch is taken.

Syntax

IF (NOT) logical expression THEN

statement
OL-VS-34 VectorScript Language Guide

Conditional Statements VS
VectorScript Language Guide
ELSE

statement;

Example - IF-THEN-ELSE structure

Procedure ASample;

VAR

IntegerVal:INTEGER;

BEGIN

IntegerVal:=8;

IF(IntegerVal > 7) THEN

Message(‘Value was greater than 7’)

ELSE

Message(Value was less than or equal to 7');

END;

Run(ASample);

In the example, a relational expression is used to return a TRUE or FALSE result, which is then used to
determine what path execution should take. Since IntegerVal is equal to 8, the THEN path is taken, and
the appropriate message is displayed. If you changed the value to 6, the execution would follow a
different path, executing the statements found after the ELSE reserved word.

The expressions which determine the branching of execution can be as simple or complex as your
needs warrant. Several expressions can be used to test various conditions, and thereby define a very
explicit circumstance under which a series of statements will execute. The next example illustrates the
use of such complex expressions.

IF-THEN-ELSE statements can also become more complex in terms of the statements executed in the
two branches of the structure. Multiple (compound statements can be executed in each branch, and
additional nested conditional or repetition can also be included in these branches.

Syntax

IF (NOT) logical expression THEN

BEGIN

statement;

statement;

. . .

. . .

statement;
VectorScript Language Guide OL-VS-35

Conditional Statements

VectorScript Language Guide
END

ELSE BEGIN

statement;

statement;

. . .

. . .

statement;

END;

Example - IF-THEN-ELSE with complex expression

Procedure ASample;

VAR

IntegerVal:INTEGER;

BEGIN

IntegerVal:=90;

IF((IntegerVal > 0) AND (IntegerVal < 90)) OR

((IntegerVal > 180) AND (IntegerVal < 270)) THEN

Message(‘Tangent is positive.’)

ELSE

Message(‘Tangent is negative or value out of range’);

END;

Run(ASample);

You can specify a very complex set of conditions which must be satisfied for a statement to be
executed. In the example, only angle values in a certain range will be considered as generating a
positive tangent value.

Note the use of the parentheses to control the precedence of evaluating the different expressions. When
using multiple expressions to evaluate a condition, parentheses should be used to define the boundaries
of the expressions, and indicate to the VectorScript interpreter that they should be evaluated first.

In the example, two levels of parentheses were used, one to obtain operands for the AND operation,
and the second to return the results of the AND operations as operands for the OR operation. The result
of the OR operation determines the path to be taken in the structure.

Syntax

IF (NOT) boolean expression THEN

BEGIN
OL-VS-36 VectorScript Language Guide

Conditional Statements VS
VectorScript Language Guide
statement;

statement;

. . .

. . .

statement;

END

ELSE IF boolean expression THEN

BEGIN

statement;

statement;

. . .

. . .

statement;

END

ELSE BEGIN

statement;

statement;

. . .

. . .

statement;

END;

Example - IF-THEN-ELSE with compound statements

Procedure ASample;

VAR

RealVal:INTEGER;

BEGIN

RealVal:=0;

RealVal:=RealDialog(‘Enter a width’,’6');

IF REALVal< 6.0 THEN BEGIN

RealVal:=RealVal*1.25;

Message(RealVal);

END

ELSE BEGIN

RealVal:=RealVal*1.1;

Message(RealVal);

END;

END;
VectorScript Language Guide OL-VS-37

Case Statement

VectorScript Language Guide
Run(ASample);

In the example, multiple statements are specified for each branch of the IF-THEN-ELSE structure. If
the value entered by the user is less than 6, the value will be multiplied by 1.25 and displayed;
otherwise, the value is multiplied by 1.1 and displayed.

CASE STATEMENT

A CASE statement allows the result of a single expression to be compared to a number of constant
values. VectorScript can execute a CASE statement more efficiently then a series of nested If-THEN
statements, although the CASE statement is not quite as flexible.

Example - Case statement

CASE integerValue OF

1: Message(’One’);

2: Message(’Two’);

3: Message(’Three’);

OTHERWISE Message(’Unknown Number’);

END;

{

The case labels must be computable at script compilation time. They
cannot depend on variables or function results. When the CASE
statement executes,if an exact match is found between integerValue
and one of the case labels, the statement following that label is
executed and then execution proceeds at the statement following
END. If an OTHERWISE clause exists and no match was found, the
statement following OTHERWISE is executed. If there is no OTHERWISE
and no match was found, then execution continues at the statement
following the END.

}

{===}

END;
OL-VS-38 VectorScript Language Guide

Control Statements VS
VectorScript Language Guide
CONTROL STATEMENTS

Control statements are a special type of statement which allows the programmer to have direct control
over the program flow. The single control statement available in VectorScript is the GOTO statement,
which interrupts execution and allows you to jump to a predefined location in the script.

Syntax

GOTO <label identifier>

Where the label is a corresponding numeric identifier located in the code which indicates the
destination of the jump.

Example - GOTO statement

PROCEDURE GOTOExample;

LABEL

911;

BEGIN

IF YNDialog(’Are you done?’) = TRUE THEN

GOTO 911;

IF YNDialog(’Are you sure you are not done?’) = TRUE THEN

GOTO 911;

IF YNDialog(’Are you positive?’) = TRUE THEN

GOTO 911;

Message(’You cannot be convinced.’);

911: { bail out - GOTOs are most useful in processing }

{ errors or cancellations during a long sequence }

{ of operations }

END;

Run(GOTOExample);

GOTO statements can be used to exercise a great deal of control over script execution. In practice
however, use of GOTO statements should be carefully considered, as improper use of GOTO can result
in unpredictable behavior from VectorScript scripts, and can make problems very difficult to trace and
VectorScript Language Guide OL-VS-39

Procedures and Functions

VectorScript Language Guide
diagnose. Good program design usually eliminates the need for using GOTO statements at all in
VectorScript scripts.

PROCEDURES AND FUNCTIONS

In VectorScript, procedures and functions are the basic " action" unit for performing tasks. The scripts
which you create function as a unit, performing a particular task when called. On the smallest scale, the
predefined VectorScript procedures and functions which you use in your code perform tasks for the
VectorScript script you have defined. It is no accident that your script begins with the Procedure
statement. In many ways your VectorScript script is no different than VectorScript’s predefined
procedures and functions. To the VectorScript interpreter, they are almost identical.

Procedures

In VectorScript, a procedure is a series of statements grouped together and called as a unit to perform a
specific task. Procedures can receive input in the form of parameters, and can return data back through
them as well using variable parameters.

Procedure statements have two components: the procedure name, or identifier, and it’s parameters,
which supply needed data to the statement.

Syntax

Procedure statement:

<procedure name>(param1,param2,…,paramn(VAR param1,param2,…));

Procedure declaration:

<Procedure name>;

<definitions section>

<declarations section>

(<subroutine declarations>)

BEGIN

<statement section>

END;

Run(<Procedure name>);
OL-VS-40 VectorScript Language Guide

Procedures and Functions VS
VectorScript Language Guide
The general format is :

Procedure name(parameter1,parameter2,…);

Example - Procedure statement

Rect(0,0,2,2);

In the example, the procedure statement, when called, will draw a rectangle. The rectangle will be
defined by the parameters (0,0) and (2,2), which represent two corners of the rectangle. You can also
define your own procedures for use in your scripts.

Functions

A function is subroutine which is designed to specifically compute and return a value. Instead of
returning a result through a variable parameter, the result is returned directly. As such, functions can be
used as operands in expressions, because the function call itself represents a value. In all other ways,
functions are very similar to procedures; they also must be declared, and they can accept input via a
formal parameter list. Let’s take a look at how functions can be used to our advantage in VectorScript.

Example - Functions

Procedure CalcYthPower;

VAR

Base,Exponent,Result:REAL;

{—subroutine to calculate x raised to y—}

Function Raise2Power(theBase,theExp:REAL) : REAL;

BEGIN

Raise2Power:=theBase**theExp;

END;

BEGIN

Base:=RealDialog(‘Enter base value’,’1');

Exponent:=RealDialog(‘Enter exponent value’,’0');
Function
returns value to
variable result

Result:=Raise2Power(Base,Exponent);

Message(Base,’ to the ‘, Exponent,’th = ‘,Result);

END;

Run(CalcYthPower);

Functions are indeed similar to procedures. You must declare them so that the VectorScript interpreter
knows what input the function will accept, and what it will return.
VectorScript Language Guide OL-VS-41

Procedures and Functions

VectorScript Language Guide
With the function in the example, the returned value is passed back to the main program directly. In
order to do this, you must declare the type of data that will be returned, and direct the result out of the
subroutine appropriately. To direct the data, instead of passing the final result to a variable, you use the
name of the function. This specialized syntax is understood by the interpreter, and the value is handled
accordingly. This direct return is what allows a function to be used as an operand in an expression.

Function calls can be used with expressions to condense and streamline code, resulting in faster scripts.
The next example shows how to use a function in a conditional expression.

Example - Functions and conditional expressions

Procedure CalcYthPower;

VAR

Base,Exponent,Result:REAL;

{—subroutine to calculate x raised to y—}

Function Raise2Power(theBase,theExp:REAL) : REAL;

BEGIN

Raise2Power:=theBase**theExp;

END;

BEGIN

Base:=RealDialog(‘Enter base value’,’1');

Exponent:=RealDialog('Enter exponent value','0');

IF (Raise2Power(Base,Exponent) < 0) THEN

Function is
used as
operand of
relational
expressiion

Message('Odd exponent value')

ELSE

Message('Even exponent or positive base value');

END;

Run(CalcYthPower);

Since the function returns a value, it can be used anywhere a value would ordinarily be used. This
flexibility makes it possible to create complex expressions which can make specific decisions based on
the results returned by your subroutines.

Defining Subroutine Procedures and Functions

The procedures and functions you define work almost identically to the predefined ones that are part of
the VectorScript language. They can perform calculations, process data, or any of the other tasks that
can be performed by the packaged versions. Subroutines cannot be run on their own, but will perform
part of the overall work of the main script.
OL-VS-42 VectorScript Language Guide

Procedures and Functions VS
VectorScript Language Guide
Let’s look at a simple example of a subroutine procedure to learn more about how they are defined and
used.

Example - Subroutine

Procedure SwapTwoNums;

VAR

IntValue1,IntValue2:INTEGER;

{—the subroutine—}

Procedure PerformSwap;

VAR

Temp:INTEGER;

BEGIN

Temp:=IntValue1;

IntValue1:=IntValue2;

IntValue2:=Temp;

END;

{————————}

BEGIN

IntValue1:=IntDialog("Enter first value','0');

IntValue2:=IntDialog('Enter second value',’0');

PerformSwap;
Subroutine call

Message('First value is now :',IntValue1);

Wait(1);

Message('Second value is now :',IntValue2);

Wait(1);

ClrMessage;

END;

Run(SwapTwoNums);

In the example, we take input from the user in the form of two integer values. The subroutine we have
defined is used to swap the numbers, which are then displayed.

Defining your subroutine is almost the same as defining a script. When defining the subroutine, you
use the same basic structure defining the statement and (optionally) declaration parts, and you begin
the definition with the Procedure statement. The one major difference is the absence of the Run
statement; this statement is only used at the end of a full fledged VectorScript script, to tell the
VectorScript interpreter to execute the script in VectorWorks.
VectorScript Language Guide OL-VS-43

Procedures and Functions

VectorScript Language Guide
Note the position of the subroutine in the script structure; subroutines must always be defined before
the beginning of the main part of the script. If they are not defined in this way, the subroutines will not
be available to your script.

The subroutine in the example used the integer variables directly from the main part of the script by
accessing global variables. You can also pass them as parameters to the subroutine. This method has
advantages over direct reference; we will explore these a little bit later. For now, let’s see how input
parameters are defined for subroutines.

Example - Subroutines with Input Parameters

Procedure SwapTwoNums;

VAR

IntValue1,IntValue2:INTEGER;

{—the subroutine—}

Procedure PerformSwap(theFirst,theSecond:INTEGER);

VAR

Temp:INTEGER;

BEGIN

Temp:=theFirst;

theFirst:=theSecond;

theSecond:=Temp;

END;

BEGIN

IntValue1:=IntDialog('Enter first value','0');

IntValue2:=IntDialog('Enter second value','0');

PerformSwap(IntValue1,IntValue2);
Subroutine call

Message('First value is now :',IntValue1);

Wait(1);

Message('Second value is now :',IntValue2);

Wait(1);

ClrMessage;

END;

Run(SwapTwoNums);

The VectorScript interpreter treats your subroutine procedures and functions just like the predefined
ones; consequently, you have to tell the interpreter what to expect as input when using your procedures
to perform tasks. In the example, we passed the two integer values as parameters to our subroutine. The
interpreter knows from the declaration to expect that two integer values will be passed into the
OL-VS-44 VectorScript Language Guide

Procedures and Functions VS
VectorScript Language Guide
positions we defined, which are also known as the formal parameters of the subroutine. The variables
were then used in the subroutine and the swap was performed. The variable used to temporarily store
one of the integer values is defined as part of the subroutine, and is known as an actual parameter.

The advantage in using parameters is that we could easily pass two other variables to the subroutine to
be swapped; we could then use the subroutine as many times as we wished in our main program. This
modular approach can result in programs which are easier to read and understand, and which are
smaller and which run faster.

Parameter passing has another distinct advantage; it also allows for passing data back from the
subroutine to your main script. This two-way data exchange feature is the key to the modularity of
subroutines.

To pass data back from your subroutine, you use what are known as variable parameters, which are
defined in the subroutine’s formal parameter list with the reserved word VAR. You can then use the
variable parameter in your subroutine calculations, and when the subroutine completes, the value is
passed into whatever variable you specify in the call in your main script.

Example - Passing data using variable parameters

Procedure CalcYthPower;

VAR

Base,Exponent,Result:REAL;

{—subroutine to calculate x raised to y—}

Procedure Raise2Power(theBase,theExp:REAL;VAR Value:REAL);

BEGIN

Value:=theBase**theExp;

END;

BEGIN

Base:=RealDialog('Enter base value','1');

Exponent:=RealDialog('Enter exponent value','0');
Function
accepts values
as input

Raise2Power(Base,Exponent,Result);

Message(Base,' to the ', Exponent,'th = ',Result);

END;

Run(CalcYthPower);

In the example, the input values are passed as the first two values in the parameter list of the
subroutine, and the result is returned into the variable occupying the third position in the list.
VectorScript Language Guide OL-VS-45

Program Scope

VectorScript Language Guide
The use of variable parameters makes it very simple to exchange data between your main program and
your subroutines, doing so in a way that makes it very easy to understand and which makes your
subroutines easy to reuse without modification.

PROGRAM SCOPE

As you begin to use subroutines in your scripts, it becomes important that you understand the concept
of program scope.

Program scope describes the “realm”, or area, where the variable is considered defined and valid, and
may be used to represent a value or action. The scope of a variable can be defined as a “program block”
of the program, or an area comprising one definition, one declaration, and one statement part. A
subroutine, whether it is a procedure or a function, is one block; the main script itself is also a block. If
a variable is defined within a block (declared at the beginning of the block), it’s scope is said to be that
block, plus any blocks that may be nested inside. Variables declared as part of the main script are said
to be “global” in scope; that is, they are valid everywhere throughout the program.

This concept has important implications for accessing data. If a variable is declared as an actual
parameter of one of your subroutines, you cannot access it from your main program. It may, however,
be used by your subroutine, and any subroutines nested within. The next example illustrates this
concept.
OL-VS-46 VectorScript Language Guide

Program Scope VS
VectorScript Language Guide
Example - Program Scope

Procedure WoodPrice;

CONST

Tax=0.05;

VAR

BoardFeet,Price,TotalCost:REAL;

Procedure CalcCost(Feet,PPF:REAL;VAR Cost:REAL);

VAR

baseCost:REAL;

Function AddTax(RawCost:REAL):REAL;

BEGIN

AddTax:=RawCost+(RawCost*Tax);

END;

{-begin CalcCost -}

BEGIN

baseCost:=Feet*PPF;

Cost:=AddTax(baseCost);

END;

{—end CalcCost—}

{— begin main—}

BEGIN

BoardFeet:=RealDialog('Enter no. of feet','0');

Price:=RealDialog('Enter price per foot','0');

CalcCost(BoardFeet,Price,TotalCost);

Message('Total cost is $',TotalCost:6:2);

END;

{—end main—}

Run(WoodPrice);

Scope of WoodPrice

Scope of CalcCost

Scope of
AddTax

The example has three blocks, or areas of scope: the main procedure(WoodPrice), the
subroutine(CalcCost), and the function(AddTax). In the example, the total cost of the wood is returned
via variable parameter to the main program for output. If we tried to reference the value directly, by
replacing TotalCost in the message procedure with Cost, we would get an error. This is because in the
main program, Cost is undefined; it’s scope does not extend to the main program.
VectorScript Language Guide OL-VS-47

Recursion

VectorScript Language Guide
On the other hand, if we wanted to access the board feet directly, we could, by replacing Feet with
BoardFeet. Because BoardFeet is defined in the main program, it can be referenced in any subroutine;
in other words, it’s scope is global.

Another example of this is the use of the constant Tax. Because it is declared in the main program, we
can access it directly in the function AddTax. This makes adjusting the tax rate very simple, as we only
need change one value and our entire script will still work properly.

Program scope applies to the all identifiers (constants, variables, and subroutines) within VectorScript.
The figure below shows another way of illustrating the concept of program scope. Scope may be
alternately thought of as a boundary around a particular program block; the identifier is valid anywhere
within the boundary, and invalid outside of it.

Figure - Program Scope

Identifiers (internal subroutines, variables, and constants) defined in each of the blocks shown in the
figure would then have scope as follows:

Identifier’s declaration
location Block scope

main routine ‘A’ A,B,C,D

subroutine ‘B’ B,C,D

subroutine ‘C’ C,D

subroutine ‘D’ D

RECURSION

Past versions of MiniPascal have not supported recursively called functions. VectorScript fully
supports recursion. Be aware that while VectorScript attempts to gracefully handle infinitely recursive
code, it can cause VectorWorks to crash.

Example - Recursion

FUNCTION CountObjects:LONGINT;

{

CountObjects is an example of using recursion

to traverse a VectorWorks drawing which contains hierarchical

groups.

}

OL-VS-48 VectorScript Language Guide

Recursion VS
VectorScript Language Guide
VAR count:LONGINT;

root:HANDLE;

levels:LONGINT;

PROCEDURE WriteNodeInfo(level:LONGINT; h:HANDLE);

VAR i:LONGINT;

objType:INTEGER;

BEGIN

FOR i := 1 TO level DO

Write(' ');

objType := GetType(h);

CASE objType OF

2: Write('Line');

3: Write('Rect');

4: Write('Oval');

5: Write('Polygon');

6: Write('Arc');

10: Write('Text');

11: Write('Group');

OTHERWISE Write('Unknown Type');

END;

WriteLn(' (', objType, ')');

END;

{

The CountList subroutine is called for the root layer. It

loops through each object in the layer and processes it. If

The object is a group, CountList recursively calls itself

to process all objects in the group. Because VectorWorks

lists are guaranteed to be finite, this will never cause

infinite recursion.

}

PROCEDURE CountList(node:HANDLE);

VAR child:HANDLE;

BEGIN

WHILE node <> NIL DO BEGIN

WriteNodeInfo(levels, node);
VectorScript Language Guide OL-VS-49

Recursion

VectorScript Language Guide
child := FInGroup(node);

IF (child <> nil) THEN BEGIN

{node has children, so we recursively count them}

levels := levels + 1;

CountList(child);

levels := levels - 1;

END;

count := count + 1;

node := NextObj(node);

END;

END;

BEGIN

levels := 0;

count := 0;

root := FObject;

CountList(root);

CountObjects := count;

END;

This is the recursion output:

Group (11)

 Group (11)

 Rect (3)

 Line (2)

 Line (2)

 Text (10)

 Text (10)

 Rect (3)

 Rect (3)

Group (11)

 Group (11)

 Rect (3)

 Line (2)

 Line (2)

 Text (10)
OL-VS-50 VectorScript Language Guide

Arrays VS
VectorScript Language Guide
 Text (10)

 Polygon (5)

ARRAYS

Array variables are a method of storing related data under a single variable reference, allowing a large
amount of information to be referenced from a single item. Arrays store their information in locations
that are contiguous, that is, one right after the other, making it possible to sort or methodically process
large amounts of data.

Arrays are declared in VectorScript as follows:

<array name> : ARRAY[1..n] OF <data type>;

where n is between 2 and 32767. The values within the brackets represent the size, or bounds, of the
array, which is the number of places that may hold data.

To retrieve a value from an array requires two components: the name of the array and the location, or
array index, of the data which we want to retrieve. Array definition and use is shown in the example
below.

Example - Arrays

Procedure ArrayExample;

VAR

i :INTEGER;

Words : ARRAY[1..7] OF STRING;

Result:STRING;

BEGIN

Words[1]:='This ';

Words[2]:='is ';

Words[3]:='an ';

Words[4]:='example ';

Words[5]:='of ';

Words[6]:='array ';

Words[7]:='usage.';

i:=1;

WHILE i < 8 DO BEGIN

Result:=Concat(Result,Words[i]);
VectorScript Language Guide OL-VS-51

Vectors

VectorScript Language Guide
i:=i+1;

END;

Message(Result);

END;

Run(ArrayExample);

The example shows how easily data can be accessed by moving along, or traversing, the array. While
the example shows how the array is traversed for output, the same type of traversal can be adapted for
input as well.

Arrays can also be two dimensional, with the data values forming a grid pattern rather than a linear
order. The format for declaring two dimensional arrays is

<array name> : ARRAY[1..m,1..n] OF <data type>;

The corresponding call to retrieve a data value would then require two index values to identify the
data’s position within the array.

Arrays of three or more dimensions are not allowed in VectorScript. Arrays are powerful tools for
implementing search and sort routines in VectorScript. These types of tools extend the data processing
capabilities of VectorWorks far beyond that of most other CAD packages.

VECTORS

Vectors in VectorScript are specialized data types used to provide vector calculation capabilities within
the language. Vector quantities are an important tool in the physical sciences, as well as in mechanical
and other types of design. While VectorScript does not provide sophisticated tools for analyzing
vectors, all basic vector operations are supported in the language. In VectorScript, a vector variable is
declared as follows:

<variable name> : VECTOR;

A vector stores three values of type REAL. Each value represents a location along the x, y or z axis.
Values within the vector may be stored or retrieved through the use of an index in the range 1 to 3.

Example - Vector value retrieval

PROCEDURE Test;

VAR

aVector : VECTOR;

BEGIN
OL-VS-52 VectorScript Language Guide

Search Criteria VS
VectorScript Language Guide
aVector[1] := 1;

aVector[2] := 1;

aVector[3] := 0;

Message(‘Vector - X: ‘,aVector[1],’, Y: ‘,aVector[2],’, Z:

‘,aVector[3]);

END;

RUN(Test);

The following vector operations are supported in VectorScript (‘v’ and ‘w’ are vectors and ‘k’ is a
nonzero real number):

Negative -v

Addition v + w

Subtraction v - w

Multiplication with a
scalar

 k * v

Division by a scalar v / k

Dot Product v • w

Cross Product v * w

While vectors may appear to be similar to any other basic data type, because they hold several values
and are similar to arrays, they cannot be passed as parameters to or returned from user defined
subroutines.

SEARCH CRITERIA

VectorScript provides a number of procedures which allow the user to make use of the attributes of
objects as a method of selecting them, as well as retrieving information from them. These procedures
are known as inquiry, or search, routines.

Each graphic object within the document has attributes which can be read to identify the object. Some
of these attributes include layer, class, linestyle, and object type. Inquiry routines make use of a user
specified search criteria to go through the list of objects in the document and find any objects which
match the specified criteria.
VectorScript Language Guide OL-VS-53

Search Criteria

VectorScript Language Guide
The example below illustrates a simple inquiry operation, counting all the objects in a particular class.
In more complex documents this type of procedure can be extremely useful for retrieving all sorts of
information.

Example - Inquiry procedure

Procedure CountParts;

VAR

NumParts:LONGINT;

BEGIN

NumParts:=Count((C=’Plumbing Fixtures’));

Message(NumParts,’ fixtures were found’);

END;

Run(CountParts);

In the example, note that the inquiry procedure’s parameter. This specially formatted parameter is the
search criteria. Each search criteria is comprised of two parts: the attribute type and the attribute
specifier.

Example - Search criteria

C='Edged'
Attribute
Type

Attribute Specifier

The first part, the attribute type, identifies what type of attribute is to be searched across for a match.
Attribute types can include layers, classes, pen patterns, selection status, or many others. This part of
the criteria ‘narrows’ the search, allowing for quick processing of objects. The second part, the
attribute specifier, is the value to be matched, also known as the target value. The inquiry routine
compares this value against the value assigned to the object, and performs the appropriate action if a
match has occurred. In the case of the above example, when a match to the criteria is found, the
running count of objects is incremented by 1. When the end of the object list is reached, the procedure
returns a total count of objects matching the criteria.
OL-VS-54 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
Syntax

All search criteria conform to a few simple rules of syntax. These rules make it possible for
VectorWorks to quickly search the object list by using an internal search function which uses a uniform
set of rules for it’s search.

• All individual search criteria must be enclosed in parentheses, even when specifying only one
criteria. These parentheses are in addition to the normal parentheses which contain the
parameters for the function or procedure.

• All text string attribute specifiers must be enclosed in quotes. This includes layer names,
classes, etc. A good rule of thumb is if the specifier is something that can be modified by an
editable text field in VectorWorks (layer names, for example), then it should be enclosed in
quotes.

Example - Syntax

numRects:=Count((T=Rect)) & (C='Detail'));

Search Function

Multiple criteria separated by
ampersand

Criteria in parenthesis

String specifier in quotes

Narrowing the Search

Search criteria can be combined to further narrow and define an inquiry. This allows for more
flexibility in creating specific searches to find small sets or single objects, and is known as compound
search criteria.

When specifying compound search criteria, each criteria is formatted according to normal rules of
syntax, then separated by an ‘&’ symbol or the reserved word AND. This delimiter includes the
different criteria as part of a single search inquiry. For example, suppose a facilities manager had a
document which contained polygons representing room areas for each room on every floor of an office
building If it was necessary to derive a sum total of all the room areas on the second floor of the
building, a single search criteria could be constructed to perform this operation. The example below
shows the inquiry function call.

Example

Procedure AreaSecond;
OL-VS-55 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
VAR

TotArea:REAL;

BEGIN

TotArea:=Area((C=’Room Areas’) AND (L=’Second Floor’));

Message(‘Area total for 2nd floor : ‘,TotArea);

END;

Run(AreaSecond);

The compound criteria narrows the search, thereby allowing specific information to be extracted from
the document.

Multiple Search Criteria

Search criteria can also be specified to search across multiple attribute specifiers for a single attribute
type. In this way, subsets of the total document can be searched, providing another method of
narrowing the overall search. This method of searching is known as multiple search criteria.

Multiple search criteria have a special formatting which allows VectorWorks’ search function to
process through the attribute specifiers as a list. In technical terms, the attribute specifiers are passed as
a parameter list to the search function. The multiple criteria is specified as follows:

(attrib type IN [attrib specifier,attrib specifier,…])

As an example, suppose it was necessary to count all symbols named ‘Part 2400’ and ‘Part 5230’ in the
document. This could be accomplished using two separate inquiries and adding the results, or could be
performed using a multiple search criteria. The example below shows the multiple search inquiry.

Example - Multiple search criteria

Procedure CountEmUp;

VAR

Total:LONGINT;

BEGIN

Total:=Count((S IN [‘Part 2400’,’Part 5230']));

Message(‘Total count was ‘,Total);

END;

Run(CountEmUp);

Even more complex searches can be created by combining the two methods just described. Suppose it
were necessary to format a drawing for export to DXF to ensure a good import into AutoCAD®, and
OL-VS-56 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
that all objects with a pen pattern of -5 on layers ‘New Construction’ and ‘Proposed Site Mods’ had to
be selected for further processing. An inquiry could be constructed to specifically select these objects.
The inquiry for this is listed below.

Example - Complex search inquiry

Procedure ProcessSelect;

BEGIN

SelectObj((PP=5) AND (L IN [‘New Construction’,’Proposed Site
Mods’]));

END;

Run(ProcessSelect);

Records and Fields

Another way of using inquiry routines involves using records and fields. Using records and fields as
attribute specifiers adds significant power to the inquiry routines, since the data within records can be
used as a basis for searches.

The syntax for searching by record is very similar to the syntax for multiple criteria, except that the
name of the record in quotes is used as the specifier. An example of a record name as attribute specifier
is shown below.

Example

Procedure NumRex;

VAR

RecCount:LONGINT;

BEGIN

RecCount:=Count(R IN [‘Part Data’]);

Message(‘Total Recs :’,RecCount);

END;

Run(NumRex);

This example would count all the ‘Part Data’ records attached to objects in the document.

Fields can also be used to create inquiries. The example below shows the format for a record-field
attribute specifier.

Example - Record Field attribute specifier

Procedure NumRex;

VAR
OL-VS-57 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
RecCount:LONGINT;

BEGIN

RecCount:=Count((‘Part Data’.’Cost’));

Message(‘Total Recs :’,RecCount);

END;

Run(NumRex);

If this example seems a bit odd to you, it should. There is no inherent advantage to using a record field
specifier to perform a count of records, since each ‘Part Info’ record will have a ‘Cost’ field. In the next
section, though the advantages of record field specifiers will become apparent.

Operators in Attribute Specifiers

Inquiry routines in VectorScript support one additional feature which adds yet more flexibility and
power to their abilities. Record field attribute specifiers support the use of relational operators to
compare field data to a specific value. When used with these operators, this method of performing
inquiries takes on new importance. For example, suppose it was necessary to select all fixtures less
than a certain price in order to update their pricing. An inquiry could be constructed which would
perform just such an operation. The following example illustrates this inquiry.

Example - Rec Field Search with Operators

Procedure ChoosePart;

BEGIN

SelectObj((‘Part Data’.’Cost’ < 100.00));

END;

Run(ChoosePart);

Using this inquiry, only objects whose ‘Cost’ field has a value less than 100.00 will be selected. The
power of this is evident, since it allows objects to be matched according to very specific criteria. This
method can also be combined with the compound and multiple search criteria methods to producer
inquiries which match specific objects or sets of objects.

Other Search Criteria

In addition, there are a couple of other criteria which add some additional flexibility to inquiry
routines.
OL-VS-58 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
Select All Objects

This search criteria can be used to process every object in the document, regardless of visibility, layer,
or lock status.

Example

Count(All);

counts all objects.

Visibility Status

Visibility status can be used as a criteria as well. When this criteria is used, the inquiry routine will
search all visible or invisible objects.

Example

Count((V=False));

counts all invisible objects.

Selection Status

Selection status may be used to further narrow searches, or as a criteria by itself. The criteria will
specify either all selected or all deselected objects.

Example

Count((SEL=False));

counts all deselected objects.

Count((L=’First Floor’) AND (SEL=True));

counts the slected objects on layer ‘First Floor’.
OL-VS-59 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
Search Criteria Parameters

Attribute Type Identifiers

Attribute Type Attribute Type Identifier Example

Arrowhead AR (AR=1)

Class Name C (C='Tile')

Every Object All All

Fill Background FB (FB=23)

Fill Foreground FF (FF=42)

Fill Pattern FP (FP=3)

Layer Location L (L='Basement')

LineWeight LW (LW=2)

LineStyle PP (PP=2)

Object Name N (N='Brick')

Object Record R (R IN['Doors'])

Object Type T (T=Rect)

Pen Background PB (PB=Black)

Pen Foreground PF (PF=Black)

Pen Pattern PP (PP=1)

Selected Status Sel (Sel=True)

Symbol Name S (S='Window')

Visibility V (V=True)

InSymbol InSymbol InSymbol

Attribute Field Identifiers

Attribute Field Attribute Field Identifier Example

Object Name String of 20 or less
characters

(N='Brick')

Class Name String of 20 or less
characters

(C='Tile')

Layer Location String of 20 or less
characters

(L='Basement')
OL-VS-60 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
Fill Pattern FP followed by fill pattern
number

(FP=3)

LineWeight LW followed by line
weight number

(LW=2)

LineStyle PP followed by pen pattern
number

(PP=2)

Object Type:

Rectangle Rect (T=Rect)

Oval Oval (T=Oval)

Polygon Poly (T=Poly)

Polyline Polyline (T=Polyline)

Arc Arc (T=Arc)

Quarter Arc QArc (T=QArc)

Line Line (T=Line)

Text Text (T=Text)

Rounded Rectangle RRect (T=RRect)

2D Locus Locus (T=Locus)

3D Locus Locus3D (T=Locus3D)

Free Hand Line FHand (T=FHand)

Dimension Dimension (T=Dimension)

Symbol Symbol (T=Symbol)

Sweep Sweep (T=Sweep)

Mult. Extrude MXtrd (T=MXtrd)

Worksheet SprdSheet (T=SprdSheet)

Group Group (T=Group)

Mesh Mesh (T=Mesh)

Extrude Xtrd (T=Xtrd)

Roof / Floor Slab (T=Slab)

Wall Wall (T=Wall)

Layer Link LayerLink (T=LayerLink)

Poly3D Poly3D (T=Poly3D)

PICT Pict (T=Pict)

Bitmap Bitmap (T=Bitmap)

Light Light (T=Light)

Attribute Field Attribute Field Identifier Example
OL-VS-61 VectorScript Language Guide

Search Criteria

VectorScript Language Guide
Symbol Name String of 20 or less
characters

(S=Window)

Selected Status (Sel = True)

Selected Status (Sel = False)

Attribute Field Attribute Field Identifier Example
OL-VS-62 VectorScript Language Guide

	Basic Concepts
	Identifiers
	Statements
	Expressions
	Operators
	Data Types
	Numbers and Strings
	String Data

	Variables
	Syntax

	Constants
	Syntax

	Reserved Words and Special Symbols
	Delimiters
	Comments
	Labels
	Syntax

	Assignment Statements
	Syntax

	Compound Statements
	Predefined Procedure Statements
	Expressions
	Arithmetic Expressions
	Relational Expressions
	Logical Expressions
	AND Operator
	OR Operator
	NOT Operator
	Short Circuit Operators
	Operator Precedence

	Repetition Statements
	FOR-TO /FOR-DOWNTO Statements
	Syntax
	Syntax
	REPEAT-UNTIL Statement
	Syntax
	WHILE-DO Statement
	Syntax
	Infinite Loops

	Conditional Statements
	IF-THEN-ELSE Statement
	Syntax
	Syntax
	Syntax

	Case Statement
	Control Statements
	Syntax

	Procedures and Functions
	Procedures
	Syntax
	Functions
	Defining Subroutine Procedures and Functions

	Program Scope
	Recursion
	Arrays
	Vectors
	Search Criteria
	Syntax
	Narrowing the Search
	Multiple Search Criteria
	Records and Fields
	Operators in Attribute Specifiers
	Other Search Criteria
	Search Criteria Parameters

